
Mobile Service Oriented Architecture
in the Context of Information Retrieval

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Masterstudium

INFORMATIK

Eingereicht von:
Christian P. Praher Bakk.techn., 0255763

Angefertigt am:
Institut für Informationsverarbeitung und Mikroprozessortechnik (FIM)

Betreuung:
o.Univ.-Prof. Dr. Jörg R. Mühlbacher

Linz, Juni 2008

Kurzfassung

Diese Arbeit beschäftigt sich mit Mobile Computing im Allgemeinen und
im Umfeld einer Enterprise Search Infrastruktur im Speziellen. Der weit-
läu�ge Begri� des Mobile Computing ist dabei besonders auf so genannte
�Smartphones� bezogen, welche die Eigenschaften von Mobiltelefon, persön-
lichen digitalen Assistenten (PDA) und elektronischen Frezeitgeräten, wie
etwa Kamera oder MP3-Player, in einem Gerät vereinen.

Ziel der Arbeit ist es sowohl einen allgemeinen Überblick über das Feld
des Mobile Computing und dessen Möglichkeiten der Applikationsentwick-
lung zu bieten, als auch anhand zweier Prototypen eines mobilen Suchclients
für eine Unternehmenssuche, konkrete Implementierungen mobiler Anwen-
dungen zu zeigen.

Im ersten Teil wird deshalb nach einem kurzen Überblick über das Thema
zunächst auf die wichtigsten Betriebssysteme und Entwicklungsplattformen
im Bereich der Smartphones eingegangen. Weiters wird die mobile Web-
applikationsentwicklung von ihren Anfängen bis heute beschrieben. Ein we-
sentlicher Aspekt der Arbeit liegt auf dem Thema der Service Orientier-
ten Architekturen (SOA), speziell in einer ihrer üblichsten Realisierungen in
Form von Web Services. Nach einer kurzen allgemeinen Einführung in das
Gebiet der Web Services, werden speziell deren Eigenheiten im Hinblick auf
mobile Anwendungen aufgezeigt.

Der zweite Teil beschäftigt sich dann mit dem im Titel beschriebenen Thema
des Information Retrieval. Anhand zweier Prototypen, eine AJAX basierte
für das iPhone optimierte Webanwendung, sowie ein nativer Client auf Basis
des neuen Smartphone Betriebssystems Android, werden die unterschiedli-
chen Möglichkeiten des Zugri�s auf die Geräte-Daten näher beschrieben.
Beiden Anwendungen gemeinsam ist dabei die Kommunikation mit dem
Such-Server über ein HTTP basiertes REST Web Service.

ii

Abstract

This thesis is about mobile computing in general and in the context of enter-
prise search and information retrieval in particular. Within this paper, the
term of mobile computing is generally referred to �smartphones�. A smart-
phone represents the convergence of cell phones, Personal Digital Assistants
(PDA) and consumer electronic devices, such as cameras or mp3-players,
into one single device.

The paper aims at pursuing two goals which are, to provide a general
overview of the �eld of mobile computing and the di�erent ways of creating
mobile applications, as well as showing the concrete implementation of mo-
bile applications on the basis of two search client prototypes for an enterprise
search scenario.

The �rst theoretical part is concerned with todays most important smart-
phone operating systems and development platforms. Furthermore mobile
web application development from their commencements until today will be
described in detail. A key aspect of this part of the paper is to provide an
overview of Service Oriented Architectures (SOA) with a particular focus on
their realization by means of Web Services. After a brief general introduc-
tion of Web Services, their specialties with respect to a mobile environment
will be highlighted.

The second part of the paper deals with the issue of information retrieval.
In particular the various possibilities of accessing data stored locally on the
device will be examined by means of two di�erent prototype applications.
The �rst client represents an AJAX driven web application tailor-made for
Apple's iPhone. The second prototype shows the implementation of a na-
tive client on basis of the new smartphone operating system Android. Both
applications in common is that they communicate with the enterprise search
server via an HTTP based RESTful Web Service interface.

iii

Danksagung

An dieser Stelle möchte ich mich recht herzlich bei all den Leuten bedanken,
die ganz wesentlich zum Gelingen dieser Arbeit beigetragen haben.

Zunächst gilt mein Dank o. Univ.-Prof Dr. Jörg R. Mühlbacher der mir
ermöglicht hat diese Diplomarbeit am Institut für Informationsverarbeitung
und Mikroprozessortechnik (FIM) zu verfassen und mich während des ge-
samten Projektes stets vorbildlich betreute.

Besonderer Dank gebührt den Mitarbeitern der Firma Mindbreeze Software
GmbH, allen voran DI Daniel Fallmann und DI Jakob Praher, die das Projekt
stets mit höchster Priorität behandelten und mich immer voll unterstützt ha-
ben und die ich jederzeit mit meinen Anliegen behelligen konnte. In vielen
gemeinsamen Tre�en konnten wir das Projekt Idee um Idee verfeinern und
ich durfte einen spannenden Einblick in die Arbeitsweise einer jungen, dy-
namischen IT-Firma gewinnen.

Weiters möchte ich mich recht herzlich bei meiner Familie und meiner ge-
liebten Freundin Ariadne Köppl bedanken, die mich stets moralisch unter-
stützt haben und mir immer volles Verständnis entgegengebracht haben,
auch wenn ich in den vergangenen Monaten nur sehr wenig Zeit für sie ent-
behren konnte.

iv

Contents

Kurzfassung ii

Abstract iii

Danksagung iv

1 Introduction 1
1.1 Problem Formulation & Motivation 1
1.2 Outline of the Thesis . 2

2 De�nition of Mobile Computing 4
2.1 Smartphone � The Universal Mobile Terminal 4
2.2 Diversity of Networks . 7

2.2.1 Cellular Networks (MAN/WAN) 7
2.2.2 Wireless LAN (802.11) 9
2.2.3 BAN/PAN . 10

2.3 Key Limitations & Application Development Challenges . . . 11

3 Native Development Platforms 14
3.1 Overview . 14
3.2 Java Platform, Micro Edition (Java ME) 14

3.2.1 Basic architecture & GEN-1 16
3.2.2 Java Technology for the Wireless Industry (JTWI) . . 21
3.2.3 Mobile Service Architecture (MSA) 23

3.3 Symbian - Symbian OS . 24
3.3.1 User Interface (UI) Platforms 25
3.3.2 Application Development 26

3.4 Microsoft - Windows Mobile 30
3.4.1 Native Application Development 31
3.4.2 Java . 34

3.5 Research In Motion - BlackBerry 34
3.5.1 Java Applications . 37
3.5.2 Rich Media Enhancements (Plazmic technology) . . . 39

3.6 Access - Palm/Garnet OS . 40

v

CONTENTS vi

3.6.1 Native application development 41
3.6.2 Java . 43

3.7 Apple - iPhone OS . 44
3.7.1 Web Application Development 45
3.7.2 Native Applications 45
3.7.3 Java . 46

3.8 Mobile embedded Linux . 46
3.8.1 MontaVista - Mobilinux 47
3.8.2 ACCESS - ACCESS Linux Platform (ALP) 48
3.8.3 Open Handset Alliance - Android 49
3.8.4 Others . 52

4 Mobile Web Applications 55
4.1 Overview . 55
4.2 Traditional Mobile Web Applications 56

4.2.1 WAP 1.x . 57
4.2.2 WAP 2.x . 60

4.3 Mobile Asynchronous JavaScript And XML (AJAX) 63
4.3.1 The AJAX technologies 63
4.3.2 AJAX for Mobile Devices 67
4.3.3 Bene�ts and Limitations 71

5 Service Oriented Architecture 76
5.1 Overview . 76
5.2 Basic Concepts . 76
5.3 Web Services . 77

5.3.1 SOAP based Web Services 78
5.3.2 REST based Web Services 83

5.4 Mobile SOA . 84
5.4.1 SOAP-based versus RESTful Web Services 85
5.4.2 Security . 86

6 Mobile Search Client Prototypes 88
6.1 Overview . 88
6.2 Choice of platform . 88
6.3 General Setup . 91

6.3.1 RESTful Web Service 91
6.3.2 Security and Authentication 94

6.4 Mobile AJAX � iPhone . 94
6.4.1 Graphical User Interface (GUI) 94
6.4.2 Realization . 96
6.4.3 Special Considerations for the iPhone 100
6.4.4 Deployment . 101

6.5 Native Application � Android 102

CONTENTS vii

6.5.1 Android Architecture Overview 102
6.5.2 Prototype Architecture 110
6.5.3 Graphical User Interface (GUI) 119
6.5.4 Realization . 121
6.5.5 Deployment . 128

7 Summary & Conclusion 129
7.1 Prototype Enhancements & Future Work 131

7.1.1 Mobile AJAX Web Client 131
7.1.2 Native Android Client 132

Bibliography 133

Curriculum Vitae 141

Eidesstattliche Erklärung 143

List of Figures

2.1 Global handset sales by device type 6
2.2 Power consumption of cellular technologies 12

3.1 Overview of Java ME within the Java family of technologies . 17
3.2 JTWI (JSR 185) components within the mobile phone soft-

ware stack . 22
3.3 JSR 248 Mobile Service Architecture (MSA) chart 23
3.4 Symbian OS architecture chart 26
3.5 Symbian OS security levels 29
3.6 Windows Mobile 6 SDK overview 32
3.7 BlackBerry Enterprise Solution (BES) architecture 35
3.8 BlackBerry Internet Service (BIS) architecture 36
3.9 BlackBerry handheld software components 37
3.10 Palm Application Compatibility Environment (PACE) 42
3.11 iPhone OS technology layers 44
3.12 MontaVista Mobilinux architecture 48
3.13 ACCESS Linux Platform (ALP) architecture 49
3.14 Android architecture . 50

4.1 WAP 1.0 protocol stack . 58
4.2 WAP 1.0 programming model 60
4.3 WAP 1.0 gateway . 61
4.4 WAP 2.0 protocol stack . 61
4.5 WAP 2.0 programming model 63
4.6 Traditional versus AJAX web application model 65
4.7 The AJAX roundtrip . 66
4.8 Vodafone MobileScript within a mobile operating system stack 74

5.1 SOA �nd-bind-execute cycle 77

6.1 Position of native code, Java ME and mobile web applications 89
6.2 iPhone Safari browser standard view 95
6.3 iPhone prototype screenshots 1/3 96
6.4 iPhone prototype screenshots 2/3 97

viii

LIST OF FIGURES ix

6.5 iPhone prototype screenshots 3/3 97
6.6 Exemplary Android content URI 107
6.7 Android client class diagram of service consumer part 113
6.8 Sequence diagram of Android content provider crawler at �rst

login . 116
6.9 Sequence diagram of Android content provider crawler in nor-

mal operation . 118
6.10 Android prototype screenshots 1/3 119
6.11 Android prototype screenshots 2/3 120
6.12 Android prototype screenshots 3/3 120
6.13 Database schema of the Android search client 123
6.14 Android content URI divided into system and application part 124

List of Tables

3.1 Worldwide smartphone market shares by operating system in
Q4 2007 . 14

5.1 Relationship between HTTP methods and CRUD operations 83

6.1 Comparison between Android content provider and relational
model . 123

6.2 Android dex �le � File header 127
6.3 Android dex �le � String table 127
6.4 Android dex �le � Class list 127

x

Listings

5.1 Excerpt of Mindbreeze Query Service WSDL 81
6.1 Instance of a MES Query Service GET search request 92
6.2 Instance of a MES Query Service POST search request 92
6.3 Instance of a MES Query Service search response 93
6.4 iPhone prototype � Excerpt of JavaScript function invoking

the Web Service request . 97
6.5 iPhone prototype � JavaScript function constructing XML el-

ements . 98
6.6 iPhone prototype � Excerpt of JavaScript function handling

the asynchronous response and �lling the result list 99
6.7 Android prototype � AndroidManifest.xml File 121
6.8 Android prototype � bytesToInt() 127

xi

Chapter 1

Introduction

1.1 Problem Formulation & Motivation

This thesis is motivated in the need of the Linz based software develop-
ment company Mindbreeze Software GmbH1, to develop a mobile client for
their product �Mindbreeze Enterprise Search (MES) 3.0�. Mindbreeze is
a young software business focussing on the development of market-leading
search technologies with concrete products in the sectors of enterprise, desk-
top and website search.

The mobile computing market is currently rapidly evolving with high growth
prospects and almost daily announcements of new devices and application
platforms, which results in an increasing diversi�cation of devices, operating
system and development platforms. Compared to more traditional informa-
tion technology markets like the one of desktop computing, mobile computing
is much less consolidated and neither standards nor even industry standards
have yet been established.

Against this background, the �rst objective of the thesis is to identify and
summarize which mobile application development platforms exist today and
what capabilities each of them o�ers. If possible a candidate is to be found
that serves as a common development platform for multiple operating sys-
tems. Another issue inseparably connected to the question of the underlying
operating system is what data it reveals and how this data can be used to
support the �user on the go�. As opposed to desktop operating systems,
mobile operating systems directly manage the applications that typically
characterize a mobile device like e.g. Personal Information Manager (PIM)
(address book, calendar dates, notes, task lists, . . .), call logs, SMS/MMS
or GPS positioning data, etc. As a consequence the degree of access to this
information varies from system to system. This information is especially

1http://www.mindbreeze.com, last viewed 2008-04-23

1

CHAPTER 1. INTRODUCTION 2

relevant for an intelligent mobile client that not just considers the data pro-
vided by the server but also that stored on the local device.

Due to the enormous heterogeneity of today's mobile devices, no assump-
tion has been made in advance of how exactly a mobile enterprise search
client has to look like. The what and how have been basically left subject
to the �ndings drawn from the research accompanying the thesis. Besides
native applications, mobile web applications have been considered a possible
platform for the search client. Hence a close examination of mobile web ap-
plications and how they can be developed will also be presented in this thesis.

Another key aspect that was clear from the beginning was that any devel-
oped prototype should follow the paradigm of a Service Oriented Architec-
ture (SOA). SOA basically means that two applications communicate over a
well de�ned and uniform interface. This allows for a decoupling of the two
applications and reduces the mutual dependencies to a necessary minimum.
In the light of the ongoing fast evolution of the mobile computing market
this is an indispensible claim as any tight bonding to the server applica-
tion should best be avoided. Instead the already de�ned Mindbreeze SOA
interfaces should be used as the means of communication.

1.2 Outline of the Thesis

Basically the thesis is divided into two main parts. A theoretical, analytical
part about the most important concepts and technologies of mobile comput-
ing that spans chapters 2 to 5. And a practical part encompasing chapter 6
that describes the prototypes that have evolved from this paper.

At the beginning chapter 2 serves as a brief introduction into the �eld of
mobile computing and prepares the terminology used throughout the subse-
quent chapters of the thesis.

Chapter 3 provides an overview of the status quo of today's most common
smartphone operating and development systems. Alongside the most impor-
tant native platforms, also Java ME as a possible cross operating system
application (development) platform is discussed thoroughly.

The evolution of mobile web applications that come from a totally dif-
ferent background than their desktop counterparts but now more and more
converge into the same direction, is described in detail in chapter 4.

The concepts of Service Oriented Architecture (SOA) and how it can be
applied to mobile computing is presented in chapter 5.

The two prototypes developed alongside this thesis are described in chap-
ter 6. The �rst one is a web client tailored for the iPhone, which shows the
capabilities of modern mobile web applications. The second one is a native

CHAPTER 1. INTRODUCTION 3

application developed with Open Handset Alliance's new mobile platform
Android, which highlights the bene�ts of a native client.

Finally, chapter 7 presents a brief summary of the most important �nd-
ings of the paper.

Chapter 2

De�nition of Mobile

Computing

Mobile computing has become a real catchphrase over the past few years
and the interpretations of the meaning of the term vary greatly. As a conse-
quence, the possible de�nitions referred to by mobile computing span from
portable laptop computers, over handheld devices to ubiquitous agent sys-
tems.

2.1 Smartphone � The Universal Mobile Terminal

Within the scope of this thesis, mobile computing is generally referred to
smartphones, which represent intelligent phone centric handheld devices that
can be leveraged by third-party applications [87]. Smartphones are believed
by many to be the enabling device for mobile computing, similar to what the
IBM PC was for desktop and o�ce computing. They are sometimes dubbed
the universal mobile terminal as they unify many functionalities that have
as yet only been provided by individual devices [87]:

� Communication
The features found in a standard mobile phone are of course also key
components of every smartphone. The primary communication net-
work usually is a cellular network like Global System for Mobile Com-
munications (GSM) that o�ers the basic telephony functionality as well
as Short Messaging Service (SMS) and Multimedia Messaging Service
(MMS).

Besides the traditional cellular network, smartphones usually also pro-
vide a high speed wireless (local area) packet switched network con-
nection, most commonly in the form of Wireless LAN (WLAN).

� Computing
A smartphone possesses an advanced operating system that allows for

4

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 5

leveraging the device with third-party applications. This sort of func-
tionality was usually found in Personal Digital Assistants (PDA). A
PDA is a small mobile device that is specialized for Personal Infor-
mation Management (PIM) applications like addressbook, calendar,
task-lists, etc. The best known representative for a PDA is probably
the Palm Pilot [87]. The average PDA did not have a telephone unit
for voice communication.

� Consumer Electronics
The average smartphone also encompasses consumer electronics func-
tionalities with at least a built-in camera and a mp3-player. Together
with the advent of new more powerful devices, more and more con-
sumer electronics components are being integrated into smartphones.
Amongst the currently most popular ones are GPS (Global Positioning
System) receivers and accelerometers.

Equipped with a GPS receiver a device can precisely1 determine its
position through the signals sent from the GPS satellites. This infor-
mation can then be used by various applications e.g. route planners or
map applications. Usually the devices also expose the GPS data via
an API to third-party applications.

An accelerometer is an electromechanical device that measures accel-
eration forces2. The measured forces are both static caused by the
constant force of acceleration due to gravity, as well as dynamic caused
by moving and vibrating the accelerometer. The data provided by the
accelerometer can be e.g. used to determine the position of the device
and automatically switch the orientation (portrait versus landscape),
to quiet down the speaker when the device is dragged away from the ear
while issuing a call, or for interactive games. Like GPS, accelerometer
data is usually accessible via a native API.

A key aspect of smartphones is that they possess a complex operating
system. This is a major di�erence that sets them apart from the class of
feature phones [22]. A feature phone is a regular mobile phone with feature
support such as e.g. a high-resolution display, a built-in camera or a mp3-
player. Feature phones are closed devices that do not o�er the extensibility
through a native programming API. The only way of customization some-
times o�ered by these devices is through Java ME or via web applications.
As will be shown in section 3.2 the level of Java support usually is very
restricted and far from uniform for di�erent devices. Also web application
support is usually very restricted due to the limited built-in browsers (see
chapter 4).

1GPS singals usually provide an positioning accuracy as low as several meters. See
http://www.gartrip.de/long.htm, last viewed 2008-04-23

2http://www.dimensionengineering.com/accelerometers.htm, last viewed 2008-04-23

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 6

As �gure 2.13 shows, smartphones take only a small slice of the overall
handset market compared to feature phones. This is mostly motivated in
the higher prices of smartphones and the di�erent billing models. Usually
feature phones are bundled for free with a new mobile contract, whereas
smartphones have to be bought separately. Still smartphones already play
a very important role for business customers and are expected to become
increasingly important for non-corporate customers due to the ongoing con-
vergence with consumer electronic devices. According to �gure 2.1 smart-
phones will be the type of handset device that will experience the biggest
relative growth in terms of percentages.

Figure 2.1: Global handset sales by device type

Due to the heterogenous heritage of smartphones, their form factor may
also vary greatly. Possible are devices with a full QWERTY4 keyboard as
well as devices that only o�er a touch screen and have no keys at all, or
combinations of these two variants.

Throughout the paper, the terms smartphone, mobile phone, mobile device
and handset are used interchangeably.

3http://www.linuxdevices.com/news/NS2742315828.html, last viewed 2008-04-24
4QWERTY is a short form for describing a complete keyboard as present on a desktop

computer. The word derives from the �rst six characters found in the �rst character row
of an English keyboard: Q, W, E, R, T, Y

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 7

2.2 Diversity of Networks

Smartphones usually possess many kinds of network connections ranging
from wide range cellular networks like GSM or UMTS, over medium range
packet-switched networks like Wireless LAN, to low range networks like Blue-
tooth or Infrared (IrDa). The following is an overview of today's most im-
portant network types for smartphones. This is not a complete or technical
substantiated list, but should rather provide an overview about common
transfer rates and the resultant possibilities for network-centric mobile ap-
plications. A thorough analysis of current and future mobile networks can
be found in [87].

2.2.1 Cellular Networks (MAN/WAN)

Cellular networks are the most important type of network for smartphones.
Since their inception in the 1960s, they have advanced a lot and transfer
rates have improved signi�cantly [87]:

First Generation (1G) The �rst analog cellular networks emerged in
the 1960s but never received much attention due to their low capacities.
In 1982 the networks were improved and o�ered already as much as 832
channels and much higher capacities than the early versions. But due to
incompabilities between di�erent �rst generation systems and a general lack
of standardization, these networks never achieved mass market attention.

Second Generation (2G) The second generation cellular networks were
the �rst systems that attracted overwhelming market interest. Synonymous
for this generation are the European Global System for Mobile (GSM) as
well as the North American Code-Division Multiple Access (CDMA). GSM
was originally proposed by the European nations to design a pan-European
mobile communication network, whereas CDMA was primarily designed and
fostered by the Californian company Qualcomm5. As CDMA is primarly em-
ployed in North America, the further focus will be on GSM and its successor
technologies.

The digital and circuit-switched GSM operates on the 900-MHz and 1800-
MHz frequency bands in Europe and Asia. Due to the Time-Division Multi-
ple Access (TDMA) incorporated in GSM, multiple users can communicate
over the same frequency simultaneously with every user receiving a very
short interval in its own �x time slot. This allows eight users to share a sin-
gle 200-KHz channel in time-divison manner. Together with GSM the �rst
rudimentary cellular network data-centric application � Short Message Ser-
vice (SMS) � was introduced. SMS allowed for 160 characters to be sent over

5http://www.qualcomm.com/, last viewed 2008-04-23

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 8

the GSM network and was a huge success in Europe and Asia. Still GSM
su�ered from very low data rates of only 9.6 to 14.4 Kbps which was mainly
because of the circuit-switched nature of GSM. Another disadvantage of data
transfer over the circuit switched GSM was that the channel for transmission
(one of the eight time slots in TDMA) was always blocked, even if no data
was sent. This is no problem for voice communication where a solid steady
network connection is needed as long as both parties communicate. But it
is problematic for data transmission that is usually characterized through
bursty peeks and periods with no transfer at all.

2.5G Systems As the need for data services such as E-Mail, Multime-
dia Messages (MMS) or web browsing constantly increased, the aim was to
leverage the widely deployed GSM network with a packet-switched system
for value added data services. As a consequence the so called 2.5 G systems
were predominantly enhancements for data transfer on top of the existing
GSM network. The �rst exponent of this class of systems was General Packet
Radio Service (GPRS) that �rst went into operation in 1999. Theoretically
GPRS o�ers a data rate of up to 72.4 Kbps, but this can only be achieved
if all eight time slots are used aggregately. Since GPRS is designed to coex-
ist with traditional GSM voice services, in reality the achievable data rate
is considerably lower. A remarkable advantage of GPRS over direct data
transfer via traditional GSM is that, since no channel has to be reserved, a
connection seems always on as long as the device remains active in a GSM
network.

A further step toward 3G high speed cellular networks was the introduc-
tion of Enhanced Data Rates for Global Evolution / Enhanced Data Rates
for GSM Evolution (EDGE). EDGE uses a di�erent modulation scheme than
GSM/GPRS which allows for a much higher bit rate. If all eight available
time slots are used the data rate can be as high as 384 Kbps. But as with
GPRS this high data rates are usually not achieved in reality. Nevertheless,
due to its comparatively high data rates, EDGE is often classi�ed as 2.75 G
system.

Third Generation (3G) 3G systems currently mark the top in the evo-
lution of cellular networks. The most important manifestation of 3 G in Eu-
rope is the Universal Mobile Telecommunications System (UMTS). UMTS
represents the direct predecessor of GSM/GPRS/EDGE. UMTS can be con-
sidered an incremental technology as the speci�cation of UMTS is done in
phases6. Each phase in the UMTS evolution is called a �release�. The �rst re-
lease was named release 99 after the year of its publication. The subsequent
releases were just given sequence numbers. Release 99 was built on GSM and

6http://www.telecomabc.com/u/umts-releases.html, last viewed 2008-04-23

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 9

featured full backward compatibility with GSM as well as interoperability
between GSM and UMTS. The data rates were 64 Kbps circuited-switched
and 384 Kbps packet switched (This results from EDGE being the direct
predecessor of UMTS). Another notable evolution was release 5 which intro-
duced High Speed Downlink Packet Access (HSDPA). With downlink data
rates of up to 10 Mbps HSDPA is considered a key enabler technology for
rich Internet applications on mobile devices. The counterpart of HSDPA,
High Speed Uplink Packet Access (HSUPA), was introduced in release 6 and
o�ers increased up-link speeds of more than 5 Mbps. Eventually the UMTS
Long Term Evolution (LTE) will lead the system to a full-�edged fourth
generation network with WLAN integration, IPv6 support and data rates of
up to 100 Mbps7.

Fourth Generation (4G) Fourth generation systems will be exclusively
packet-switched and are therefore referred to as the all IP networks. Wired
and wireless services are expected to converge and the resulting networks
will provide high data rates of 20 to 100 and even 1000 Mbps. This will
eventually bring the full multimedia experience to mobile devices with video
streaming and realtime audio support. It will also allow for advanced client-
server applications with frequent interaction and data exchanges of large
�les. As a consequence of an all IP network, voice will be transferred over
the same packet-switched infrastructure as data, in the form of Voice over
IP (VoIP).

2.2.2 Wireless LAN (802.11)

Wireless Local Area Networks (WLAN) fall into a di�erent �eld of appli-
cation than cellular networks. Firstly, they operate in much more limited
ranges between several meters and a few tenths of a meter. Secondly, they
are always packet-switched instead of circuit-switched and thus primarily
data-centric. They also deliver much higher transfer speeds than the average
cellular network, with data rates of usually 11 to 54 Mbps. This makes them
the ideal complement to the voice-centric cellular networks for value added
data-services like e.g. web browsing, E-Mail or multimedia consumption. Of-
ten 802.11 wireless LANs are referred to as Wi-Fi. Wi-Fi is a certi�cation
of the Wi-Fi Alliance8 that tests and certi�es products for compliance with
the various 802.11 IEEE speci�cations.

7http://www.funkschau.de/heftarchiv/pdf/2007/fs_0707/fs_0707_s34-s35\
%20UMTS-LTE.pdf (german), last viewed 2008-04-23

8http://www.wi-�.org, last viewed 2008-04-24

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 10

The two currently most common types of 802.11 Wireless LAN are [87]:

� 802.11b
The 802.11b wireless LAN speci�cation was released in 1999. It op-
erates on the unlicensed 2.4-GHz frequency band (This is the same
frequency as the one used by microwave ovens). Because the 2.4-GHz
spectrum is free, anyone can operate a 802.11b wireless LAN router
without permission from the government or having to pay licence fees.
The maximum o�ered data rate is 11 Mbps and the maximum range
of operation is up to 100 meters. The value of 100 meters is rather
theoretical and can normally only be achieved outdoors, if only very
few obstacles (e.g. walls) are between the sender and the receiver.

� 802.11g
802.11g was introduced in 2003 and operates on the same 2.4-GHz
frequency band as 802.11b. Compared to 802.11b, 802.11g wireless
LAN o�ers a signi�cantly higher data rate of up to 54 Mbps. Most
modern smartphones are both 802.11b and 802.11g compatible.

2.2.3 BAN/PAN

Body Area Networks (BAN), or Personal Area Networks are the third type of
networks usually found in a smartphone. As their name implies, they operate
on very low ranges in the immediate vicinity of the user. They are commonly
used as wireles cable replacement (e.g. connecting an headset to a mobile or
for data synchronization with a desktop PC) and for ad hoc data networking
(e.g. mobile to mobile data transfer). The o�ered data rates are rather
low but usually su�cient for the described functionalities. Bluetooth and
Infrared are the most important Wireless Personal Area Networks (WPAN)
for mobile phones [87]:

� Bluetooth
Bluetooth was invented in 1994 by phone manufacturer Ericsson. It
is characterized by a short operation range of 10 to 100 meters and a
low data rate of 1 to 2 Mbps. Its low power consumption of only 10 to
100 mW and the low hardware unit price (less than $5) make it ideal
for small wireless devices like mobile phones. It operates on the same
unlicensed 2.4-GHz frequency band as 802.11 b/g.

� Infrared (IrDA)
The Infrared Data Association (IrDA)9 is a nonpro�t organization that
develops globally adopted speci�cations for infrared wireless commu-
nication. Although infrared is used in similar scenarios as Bluetooth,
the underlying techniques are quite di�erent. While Bluetooth uses

9http://www.irda.org/, last viewed 2008-04-24

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 11

radio waves for data transfer, infrared uses beams of invisible light to
transmit information10. By contrast to Bluetooth, infrared requires
line-of-sight (los) for communication. Due to the average data rates
of only some several hundert Kbps and the much more limited oper-
ation range of about 1 meter11 as well as the necessary line-of-sight,
infrared has been generally superseded by Bluetooth within the newer
smartphone devices.

2.3 Key Limitations & Application Development
Challenges

Mobile computing applications are bound to some speci�c limitations, which
their desktop counterparts are usually not faced with or at least not to such
high extent. Amongst others the most important ones are:

� Battery Life
Power consumption and limited battery life is one of the biggest prob-
lems mobile devices are facing today. The bottleneck of battery life
time is even considered to be so critical that it could seriously chal-
lenge Moore's Law [12, 25, 32, 59]. While engineers actually manage
to double the number of transistors on an integrated circuit every 18
months or at least every second year, power consumption could denote
a physical barrier.

Besides the processor, mobile devices also include many other com-
ponents that show a signi�cant power consumption, e.g. the display,
network devices or the graphics card. Figure 2.2 [59] shows a com-
parison of the peak power dissipation of 2G and 3G cellular network
technologies.

From an application developers perspective this means that heavy-
weight calculations and frequent network transmissions should be avoided
whenever possible.

� Processer Performance
The processor clock speed of modern mobile devices is signi�cantly
lower than that of desktop computers. One of today's most com-
mon smartphone processor architectures is Advanced RISC Machine
(ARM), which operates (at the time of writing of this thesis) on a
clock rate of considerably less than 1-GHz on a single core. By contrast
average desktop computers have dual-core CPUs which are clocked at
more than 2-GHz.

10http://www.phonescoop.com/glossary/term.php?�d=36, last viewed 2008-04-24
11http://www.gsmfavorites.com/documents/bluetooth/compared/, last viewed 2008-04-

24

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 12

Figure 2.2: Power consumption of cellular technologies

� Memory and Storage
Analogous to the processor performance, mobile devices are also lim-
ited in respect to main memory and permanent storage. Typical smart-
phones have no hard disk like desktop computers, but instead �ash
memory cards. While �ash memory cards o�er much less storage space
compared to hard disks, they o�er many other advantages crucial for
mobile devices [87]:

� Faster access times

� Smaller and lighter than hard disks

� No error-prone mechanical parts

� Quietness

� Form Factor
Whereas desktop computers always feature the more or less same ap-
pearance with a full-�edged keyboard, a mouse as input device and a
relatively big screen, smartphones may come in very di�erent shapes.

The input device could be a standard cell phone 12-button keypad
(numbers 0 to 9 as well as *, +, # keys and usually additionally some
function keys for dialing), the already mentioned QWERTY keyboard,
an alphabetic keyboard with keys arranged alphabetically as well as
touch screens with stylus-based or �nger-tip input.

The display may also vary greatly according to the general form factor
of the device. Apple's full touchscreen iPhone e.g. features a display

CHAPTER 2. DEFINITION OF MOBILE COMPUTING 13

with a resolution of 320 x 480 px12. By contrast the BlackBerry 8800
with a QWERTY keyboard o�ers a resolution of only 320 x 240 px13.

� Changing Device Context
Desktop computers always operate in the same context. Once installed
at a speci�c place, they usually remain there until the end of their
lifetime. This is opposed to mobile devices which are operated in ever-
changing scenarios. For a mobile application it may be important to
know about this augmented context and react accordingly.

� Personal Information Management (PIM)
PIM applications like address book, calendar, e-mail, etc. are also
found on desktop computers, but for mobile devices they have a par-
ticular relevance. On desktop computers they are usually independent
of the underlying operating system and installed as third-party appli-
cations. On mobile devices PIM functionalities including telephony
and SMS/MMS are core features of the underlying operating system.
The level of support for accessing PIM data varies from platform to
platform.

� Security & Privacy
Last but not least, mobile devices are subject to more security threats
than desktop computers. One of the biggest being loss and theft [87,
Chp. 6]. This is a threat mostly unknown and insigni�cant for wired
desktop applications as they are usually operated behind (secure) cor-
porate walls.

Another serious endangerment comes from the heavy interconnection
in the various previously described wireless networks that are by default
more insecure than their wired companions.

As described, the user of a mobile device also reveals more private
data than the average desktop application user. Most notably this
sensitive data comes from sensors like GPS, or from very personalized
applications like e.g. contact lists, calendars or phone logs.

12http://www.apple.com/iphone/specs.html, last viewed 2008-04-24
13http://www.mobiletechreview.com/phones/BlackBerry_8800.htm, last viewed 2008-04-

24

Chapter 3

Native Development Platforms

3.1 Overview

Alongside the myriad of mobile devices there exists also a huge number of
operating systems and even more application development platforms.

This chapter aims at giving an overview of today's most important smart-
phone operating systems and how applications can be developed for them.
Table 3.1 shows on overview of the smartphone operating systems market
share sales of quarter 4 2007, researched by analyst house Canalys [11].

Operating System Market Share Q4

Symbian OS 65 %
Windows Mobile 12 %
RIM Blackberry 11 %
iPhone OS 7 %
Linux (cumulative) 5 %
Palm/Garnet OS 0 %

Table 3.1: Worldwide smartphone market shares by operating system in
Q4 2007

3.2 Java Platform, Micro Edition (Java ME)

Java Platform, Micro Edition (Java ME, formerly J2ME) di�ers from the
other mobile platforms introduced in this chapter, in that it is no mobile
operating system. Instead it is a middle layer between a speci�c mobile
operating system and value added services and applications o�ered by a
service provider [87]. The Java Platform is divided into three main products,
each one targeted at a special �eld of application [71]:

14

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 15

� Java Platform, Standard Edition (Java SE, formerly J2SE)
Java SE serves as the standard Java Edition for developing desktop and
small server applications. It provides a rich set of APIs for all various
kinds of software development needs, from basic String manipulation
over graphics and user interface (UI) creation to networking. It is the
basis for the Enterprise Edition (Java EE).

� Java Platform, Enterprise Edition (Java EE, formerly J2EE)
Java EE extends the Standard Edition by adding a set of libraries for
creating full featured web- & server-applications. It o�ers e.g. trans-
action support, libraries for mapping objects to relationale databases
(O/R-mapping) and Web Services. It is specially known for its Servlet-
Technology, which allows for using Java's rich libraries within web-
applications.

� Java Platform, Micro Edition (Java ME, formerly J2ME)
Java Micro Edition is specially aimed for the development of applica-
tions on small, limited devices like mobile phones, PDAs, set-top boxes
and so forth. It utilizes only a subset of the APIs available with the
Standard Edition and builds on a smaller Virtual Machine (VM) for
meeting the resource scarcity of its target devices.

All editions in common is the basic architecture of the Java platform. The
term Java does not only refer do a particular language-syntax, it much more
represents an entiry platform, comprising the following three fundaments
[71]:

� The Java programming language
The Java programming language is a high level object oriented lan-
guage that is syntactically smimilar to its ancestors of the C-family of
programming languages (C/C++). It avoids the use of unsafe point-
ers and o�ers the programmer automatic memory management with
garbage collection of unreferenced objects. Another cornerstone of the
Java programming language is its inherently object oriented nature.

� The Java virtual machine
The concept of a virtual machine (VM) is the foundation of the Java
platform. It provides a layer between the native operating system
and the applications written in Java. In that way Java applications
are platform independend and can be run on any platform (having a
Java VM) without the need of recompiliation. Sun Microsystems, the
founder of Java, therefore coined the term �write once run anywhere�.
As will be shown later in this chapter this metaphor does not entirely
hold true for mobile computing.

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 16

� The Java Application Programming Interfaces (APIs)
The rich set of standard libraries is one of the main reasons of the suc-
cess of the Java platform. The spectrum of the functionalities provided
by these libraries range from basic String manipulation, I/O1, GUI2 to
concurrent and network programming.

Given this nature and the fact that Java was originally designed as a
platform for mobile embedded devices, like e.g. set-top boxes [10], it should
be ideally suited for the development of mobile applications. Java has proven
to be one of the most successful development environments for mobile com-
puting. According to Sun Microsystems Java has already been deployed on
more than 1.2 billion handsets by June 2006 and 8 out of 10 newly shipped
phones today are Java ME technology enabled [69]. This makes Java ME
at present the most ubiquitous application development platform for mobile
devices.

In light of the fact that Java is not only available on sophisticated smart-
phones running a fancy operating system but also on much cheaper feature
phones, it sounds like an extremly promissing platform for mobile software
development.

But Java ME can not be seen as an homegenous platform that is the same
on any Java enabled device. Instead it has evolved and frequently changed
along with the devices its being deployed to since its introduction in the
year 2000 [68], leaving the entire platform quite fragmented. The following
is an overview of the basic architecture and the most notably steps taken to
consolidate the platform, resulting in the di�erent �avours of Java ME that
are now available on handsets.

3.2.1 Basic architecture & GEN-1

To best �t the di�erent needs of the various mobile devices, the Java ME
architecture is divided into di�erent components (�gure 3.1 [62]).

The basic blocks of the platform are con�gurations, pro�les and addi-
tional APIs, which build on each other in a layered fashion:

� Con�gurations
A con�guration is the most basic building block, dealing with VM
speci�cations and o�ering the most basic APIs. It is tailored for the
needs of a speci�c group of devices, e.g. handsets with less than 512KB
of memory and a CPU speed of 50 to 200MHz. The VM is either a
full Java Virtual Machine (JVM) or a subset, like the Kilobyte Virtual
Machine (KVM). The currently o�ered con�gurations are the Con-
nected Limited Device Con�guration (CLDC) for small resource con-
strained devices, as well as the Connected Device Con�guration (CDC)

1Input/Output
2Graphical User Interface

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 17

Figure 3.1: Overview of Java ME within the Java family of technologies

for wireless devices with greater computing power. Presently almost
all Java-enabled mobile devices build on the CLDC.

� Pro�les
Pro�les represent the next layer in the Java ME architecture, by di-
rectly building on a certain con�guration. They add support for more
speci�c APIs and thus create a closed application development frame-
work. Typical APIs o�ered by a certain pro�le encompass applica-
tion life cycle management, user interface (UI) and persistent storage.
The most widespread pro�les are Mobile Information Device Pro�le
(MIDP) 1.0 and 2.0 which both build on the CLDC.

� Optional APIs
The optional APIs depict the top layer of the Java ME architecture
chart. Mostly these are libraries that are strongly related to mobile
computing, but can not be included by default due to special require-
ments, like a certain piece of hardware or computing power. A typical
representative of an optional package is the Bluetooth API (JSR 82).
Although very closely related to mobile wireless computing, not ev-
ery device can a priori be expected to have built-in bluetooth support.

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 18

Other characteristic packages include support for e.g. Web Services
(JSR 172), 3D-Graphics (JSR 184) or the Session Initiation Protocol
(SIP) (JSR 180).

Limited versus Connected Device Con�guration

As shown in �gure 3.1, Java ME is basically divided into two stacks of which
one is based on the Connected Device Con�guration (CDC) and the other
one builds on the Connected Limited Device Con�guration (CLDC). As de-
scribed above, a con�guration is the most basic building block in the Java
ME framework. It de�nes the most fundamental properties of a particular
Java ME enviroment like e.g. the virtual machine (VM) and the basic class
libraries. As the Java ME depicts a layered architecture, necessarily all lay-
ers that are further up in the stack ultimately depend on the fundament and
have to come up to the possibilities and boundaries de�ned in the lower levels.

The main di�erence between the CDC and the CLDC is that the CDC
builds on a general VM whereas the CLDC rests upon a limited VM, the
Kilobyte Virtual Machine (KVM) that has a specially low memory footprint
and can thus be used on devices with little computing power. Such limited
devices are e.g. ordinary handsets, which typically feature a 16- or 32-bit
processor that runs at a clock speed of 50 to 200 MHz [68]. The overall
minimum memory requirements are in the range of 160 kB to 512 kB (de-
pending on the used pro�le) [64]. Currently the KVM is being replaced in
favour of a minimalistic HotSpot VM that delivers the typical bene�ts of
HotSpot-compilation to small resource-constrained devices [68]:

The CLDC HotSpot Implementation delivers nearly an order of
magnitude better performance than the KVM while running in a
similarly small memory footprint required by resource-constrained
mobile phones and personal organizers. It delivers not only bet-
ter performance, but also more robustness. The CLDC HotSpot
Implementation is the recommended virtual machine technology
for new product deployments in this class of devices . . .

The CDC by comparison may utilize the same JVM as Java SE applica-
tions, with a typical memory footprint between 1 MB and 10 MB [64, Figure
2-19].

As most of the Java enabled devices today build on the Connected Lim-
ited Device Con�guration (CLDC), the focus of the evaluation of the Java
platform within this paper will be on the CLDC. In fact support for the Con-
nected Device Con�guration (CDC) is rather limited and at present only four
mobile devices3 supported CDC out of the box4.

3Nokia 9300/9500, SavaJE Jasper 20, SonyEricsson M600, SonyEricsson P990
4http://www.blueboard.com/javame/devices.htm, last viewed 2007-12-28

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 19

Also if a device o�ers support for CDC it typically is also capable of
running CLDC applications. Therefore considering Java as a development
platform for mobile applications today, it is inevitable to take a close look
at the CLDC and the pro�les building on it.

Basic con�gurations and pro�les

The CLDC 1.0 (JSR 30) with the MIDP 1.0 (JSR 37) pro�le building on
it were the basic working set of Java ME at its beginning in the year 2000.
According to the speci�cation [63] the following restrictions apply to CLDC
1.0 in contrast to Java SE:

� No �oating point support

� No Java Native Interface (JNI)

� Limited error handling

� No user-de�ned class-loaders

� No support for re�ection

� No object �nalization

� No weak references

� No support for thread groups and daemon threads

The �rst o�cial pro�le for the CLDC 1.0 was the MIDP 1.0 (JSR 37).
It introduced some important features like the concept of MIDlets5, GUI
classes, persistent data storage and so forth.

More notably from today's perspective are probably the things CLDC
1.0/MIDP 1.0 did not support and which add as an exclusion criteria for
developing mobile applications against this platform. MIDP 1.0 lacks e.g.
support for certi�cates and as a consequence support for Secure Sockets Layer
(SSL) or Transport Layer Security (TLS) [26]. Therefore secure connections
over HTTPS can not be made with MIDP 1.0.

According to Mobref6 MIDP 1.0 is currently deployed on approximately
11 % of the tracked handsets. Since MIDP 2.0 can also be deployed on basis

5A midlet is roughly the Java ME pendant to the Java SE Applet. It is usually refered
to as MID Pro�le application. Any Java ME CDLC based application must extend the
javax.microedition.midlet.MIDlet class to be able to run on the CLDC application
stack.

6Mobref (http://www.mobref.com/statistics/, last viewed 2007-12-29) provides a com-
prehensive database of mobile devices and allows for querying for CLDC/MIDP or Sym-
bian OS support amongst others. At the time of writing of this paper 1179 distinct devices
were listed in the Mobref database. The Mobref statistical data is collected from visitors
to the GetJar website. GetJar o�ers downloads of mobile software and has approximately
100,000 mobile visitors every day.

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 20

of CLDC 1.0 the market share of CLDC 1.0 is higher than that of MIPD
1.0 and amounts, according to Mobref, to circa 30 % of all available handsets.

To make up for the insu�ciencies of the initial versions of CLDC and MIDP
SUN Microsystems introduced its predecessors CLDC 1.1 (JSR 139) and
MIDP 2.0 (JSR 118) in the year 2003 and 2002 respectively. Since MIDP
2.0 was released prior to CLDC 1.1 it does not necessarily depend on it. In
fact many devices build on the CLDC 1.0 con�guration with MIDP 2.0 as
the basic pro�le.

Whereas changes and additions to MIDP 2.0 over 1.0 were quite funda-
mental, CLDC 1.0 was generally considered balanced and version 1.1 intro-
duced a few new functionalities. According to the speci�cation the following
main di�erences exist between versions 1.0 and 1.1 of the CLDC [66]:

� Floating point support has been added

� Classes java.lang.Float and java.lang.Double have been added

� Weak references support has been introduced

� Thread objects have names like threads in Java SE

� Classes java.util.Date, java.util.Calendar and java.util.TimeZone
have been made more Java SE compliant

� Error Handling has been improved

� Minimum required memory budget has been increased from 160 KB to
190 KB, mostly due to the �oating point support

Extensions from MIDP 2.0 to version 1.0 have been more profound and
added to a considerable fragmentation of the Java ME. MIDP 2.0 introduced
a lot of new functionalities and enabled many new applications that have not
been possible with version 1.0. Especially in the realm of mobile enterprise
application development, MIDP 2.0 introduced some indispensable features
like SSL/TLS support or the not user initiated sending of messages (push
architecture).

According to the MIDP 2.0 speci�cation [65], the most important changes
comprise:

� Support for certi�cates

� Support for secure connections by at least one of the following speci�-
cations

� HTTP over TLS (HTTPS)

� SSL V3

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 21

� WTLS

� WAP TLS pro�le and tunneling

� Extended connectivity by including the interfaces:

� CommConnection (Serial port connection)

� HttpsConnection

� SecureConnection (Secure socket stream connection interface)

� ServerSocketConnection (Server socket stream connection in-
terface)

� SocketConnection (Socket stream connection interface)

� UDPDatagramConnection (For User Datagram Protocol (UDP)
based network connections)

� PushRegistry (For porgrammatically invoking MIDlets)

� Over-The-Air (OTA) provisioning (Discovery and download/installa-
tion of MIDlets)

� Improved multimedia capabilities

� Game API

The Mobref statistic states that roughly 74 % of the observed handsets
had MIDP 2.0 support. Even if the �gure is not representative for the
overall mobile market it clearly shows that MIDP version 2.0 is much more
prevalent than MIDP 1.0 of which the market share on Mobref amounts
to approximately 11 %. CLDC 1.0 is available on circa 29 % of the listed
devices whereas CLDC 1.1 adds up to 56 %.

3.2.2 Java Technology for the Wireless Industry (JTWI)

The fragmentation of the Java ME application framework starts with the
distinction of the Connected Device Con�guration (CDC) and the Connected
Limited Device Con�guration (CLDC). Within the more prevalent stack of
CLDC there exist currently two di�erent versions of con�gurations (CLDC
1.0 & CLDC 1.1) as well as two quite di�erent pro�le speci�cations MIDP
1.0 & MIDP 2.0.

In response to the quickly evolving mobile device hardware market, ad-
ditional APIs have been introduced to allow developers to exploit the new
handset features. These APIs have been amongst others Bluetooth (JSR
82), 3D Graphics (JSR 184), Wireless Messaging (JSR 205), Web Services
(JSR 172), and so forth. This process furthermore lead to a fragmentation
of the market of Java ME enabled mobile devices and made it particularly
di�cult for the developers to rely on a basic set of functionality.

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 22

To counter this trend, SUN Microsystems introduced a new speci�cation
named Java Technology for the Wireless Industry (JTWI) (JSR 185) that
guarantees developers to �nd a basic Java ME environment consisting of
con�guration, pro�le plus additional APIs on all compliant devices.

In detail the JTWI speci�cation de�nes [67]:

� Con�guration
CLDC 1.0 (JSR 30) is mandatory but may be superseded by CLDC
1.1 (JSR 139)

� Pro�le
MIDP 2.0 (JSR 118) is mandatory

� Additional APIs
Wireless Messaging API (WMA) (JSR 120) must be present in JTWI
compliant devices.
Mobile Media API (MMAPI) (JSR 135) is an optional API, which
must only be present if the target device makes use of video playback
and audio or video/image recording within Java applications.

Further optional APIs can be included by handset manufacturers to let
Java developers optimally exploit their devices, but the JTWI speci�-
cation makes no assumptions that such packages do exist.

Figure 3.2 [67] depicts an overview of the JTWI (JSR 185) components
within a mobile phone software stack.

Figure 3.2: JTWI (JSR 185) components within the mobile phone software
stack

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 23

3.2.3 Mobile Service Architecture (MSA)

As the wireless device market continues to evolve at a rapid pace, the JTWI
speci�cation needed a revision and several extensions to comply with today's
mobile device market. The result is the Mobile Service Architecture (MSA)
which is described in JSR 248 and was introduced in september 2006. It
builds on many of the already existing Java ME speci�cations, most notably
CLDC 1.1 (JSR 139), MIDP 2.1 (JSR 118) and the mandatory additional
packages de�ned in JTWI (JSR 185).

As �gure 3.3 from Sun Microsystem's o�cial MSA-Website7 shows, the
MSA speci�cation is divided into two platforms: MSA and MSA Subset. As
the name suggests, MSA Subset is a true subset of MSA with fewer packages
supported.

Figure 3.3: JSR 248 Mobile Service Architecture (MSA) chart

Due to their inherently hardware dependent nature, Bluetooth (JSR 82),
Location (JSR 179) and Security and Trust Services (JSR 177) APIs are
conditional even within the full MSA speci�cation.

Because of its relative newness, there were only a handful of MSA com-

7http://java.sun.com/javame/technology/msa/, last viewed 2007-12-29

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 24

pliant devices on the market at the time of writing of the paper. According
to SUN Microsystems o�cial MSA device website8, there are 12 compliant
handsets available, 9 from Nokia and 3 from SonyEricsson. From this 12
devices only the 3 SonyEricsson models are full MSA compliant, whereas
the 9 Nokia phones only o�er MSA subset conformance.

3.3 Symbian - Symbian OS

Symbian OS is one of the most popular and widespread smartphone operat-
ing systems. Symbian Ltd. states in their presently latest sales and marketing
brochure, Market Round-Up [72], that there have been shipped 20.4 million
Symbian enabled smartphones in quarter 3 of 2007. Altogether more than
165 million Symbian OS powered handsets have already been sold. Currently
Symbian runs on more than 134 di�erent smartphone models from various
manufacturers, including amongst others LG, Mitsubishi, Motorola, Nokia,
SonyEricsson, Samsung, etc.

Symbian OS is especially prevalent in the European market with a market
share of almost 90 % of all smartphone devices. It also plays signi�cant roles
in the Asian, African and South American regions, but it is not dominant in
the North American market, where it falls far short of its competitors like
Microsoft Windows Mobile, RIM BlackBerry, Garnet/Palm OS or Apple's
Mac OS X iPhone, with only less than 5 % of the market.

Symbian OS originates from the EPOC operating system developed in the
mid 1990s by Psion. EPOC was a 32-bit system programmed in C++ and
was the successor of Psion's SIBO (SIxteen Bit Operating system). In 1996
the software team working on EPOC was formed into a new company called
Psion Software, to allow for a better commercial licensing model, with the
chance of licensing the EPOC OS to other Original Equipment Manufactur-
ers (OEMs) than Psion [2]. The next step in the evolution of Symbian OS
was the foundation of Symbian Ltd. in 1998 of which the original owners were
Psion, Nokia and Ericcson. Today Symbian Ltd. is jointly owned by Nokia
47.9 %, Ericsson 15.6 %, SonyEricsson 13.1 %, Panasonic 10.5 %, Siemens
8.4 % and Samsung 4.5 %9.

As a direct successor to EPOC of which the last release was 5, the �rst
version of Symbian OS was 6.0. The most current release is Symbian OS
version 9.5.

The Symbian OS is based on a microkernel design, meaning that only a
small set of system function resides in the kernel. Originally this kernel was

8http://java.sun.com/javame/technology/msa/devices.jsp, last viewed 2007-12-29
9http://www.symbian.com/about/overview/ownership/ownership.html, last viewed 2008-

01-30

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 25

not a real-time kernel but since version 9 Symbian OS is a real-time operat-
ing system [23]. Real-time systems have rigid time constraints and a system
failure occurs if they are not met by an application. As the minimalistic
microkernel of Symbian OS only provides the most basic functionalities like
memory management, device drivers or power management, much of the re-
maining functions usually found in a monolithic kernel is provided by servers.
By contrast to the kernel itself which operates in kernel-mode servers run
in user-mode which reduces the potential for memory violations or similar
fatal infringements. Servers are responsible for all kinds of low level tasks
like socket connections, �le handling, telephony, etc. Clients are the �nal
building block in the basic Symbian OS architecture. They are �normal�
applications that involve some kind of user interaction via the User Interface
(UI). Together client, server and the kernel form a client/server architecture
in which clients communicate with the servers via a message passing pro-
tocol (inter-process communication) and servers making executive calls into
the kernel when necessary.

3.3.1 User Interface (UI) Platforms

Historicaly motivated and due to the fact that handheld devices come in
many di�erent form factors with diverse capabilities, Symbian OS does not
provide a uniform User Interface (UI) platform. According to the o�cial
Symbian operating system guide10, Symbian OS itself is �headless� , o�ering
only the core frameworks and services and leaving it to the phone manufac-
turer to provide the right UI that both �ts their device and market needs.
Figure 3.411 depicts the architecture of Symbian OS. The top layer repre-
sents the proprietary UI platforms which are not part of the Symbian OS.
Currently there are three UI platforms available on top of Symbian OS:

� Nokia S60
Nokia S60 was formerly known as Series 60. Nokia also used to have
other Symbian based UI platforms like the Series 80, which are now all
being converged into S60. In its current release (3rd edition) it does
not have touch screen support. Instead the devices come with support
for various keypads like full QWERTY-keyboards, which makes them
espescially suited for easy one-handed use.

� SonyEricsson UIQ
UIQ has been originally owned by Symbian Ltd. SonyEricsson ac-
quired UIQ in February 2007 and was joined by Motorola in October

10http://www.symbian.com/developer/techlib/v9.3docs/doc_source/guide/index.html,
last viewed 2008-01-30

11http://www.symbian.com/developer/techlib/v9.3docs/doc_source/NewStarter/
1-basics.html, last viewed 2008-01-31

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 26

Figure 3.4: Symbian OS architecture chart

in ownership of UIQ 12. It supports both touchscreen and keypad input
and o�ers support for various screen resolutions.

� FOMA MOAP
MOAP stands for Mobile Oriented Application Platform and is the
Symbian UI of choice for the largest Japanese mobile operator NTT
DoCoMo. FOMA is short for Freedom of Mobile Multimedia Access
and is the brand name for the 3G-services by NTT DoCoMo. FOMA
MOAP is a closed platform, meaning that no third-party C++ appli-
cations can be installed [15].

3.3.2 Application Development

The o�cial Symbian OS guide (v9.3)13 names the following choices of pro-
gramming languages available for the developer:

12http://www.uiq.com/pressreleases2007_2824.html, last viewed 2008-01-31
13http://www.symbian.com/developer/techlib/v9.3docs/doc_source/guide/cpp-intro/

ProgLanguages.html, last viewed 2008-01-31

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 27

� Symbian C++

� Java

� Assembler-Code

� C

� OPL

� Web Development

� Other (Python, . . .)

From this list of technologies only Symbian C++, Java and mobile web
development are considered real options for application development on Sym-
bian.

Just as for desktop applications, Assembler is only needed in very rare sit-
uations where performance is of utter need and not even C/C++ performs
su�ciently well enough. As a consequence Assembler is only used for few
operating system tasks and never needed for application development.

Although with some omissions Symbian OS supports the C Standard Li-
brary, it would normally not be considered for new application development
but for situations where existing code should be ported to Symbian OS.

OPL (Organiser Programming Language or Open Programming Language)
is a Basic-like dialact that originates from the Psion PDAs. Characteristi-
cal for a representative of the Basic family of languages, it has a shallower
learning curve than C++ but also does not provide its performance and
wide range of possibilities. Since version 6 of Symbian OS the language is
Open Source under a LGPL-licence. Just like Symbian C++, OPL devel-
opment ties the application developer to the Symbian platform while at the
same time not having the performance bene�ts and rich set of the possibili-
ties that C++ o�ers. Similarly to other languages like Python, OPL is not
by default available on every Symbian enabled device which creates another
level of fragmentation and makes a large deployment of applications di�cult.

Symbian C++

As the Symbian OS is itself written in C++, it is therefore considered the
primary programming language. As a typical representative of an operating
systems native language, C++ o�ers the greatest possibilities and best per-
formance regarding memory footprint and execution speed. C++ o�ers full
access to every exposed library and is required to be used for the develop-
ment of servers, plug-ins that extend a framework and device drivers that

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 28

interact with the kernel. The logical consequence of using Symbian C++ is
of course a tight coupling to the Symbian operating system.

The division of the Symbian devices into three di�erent UI platforms nat-
urally a�ects native application development with C++. Since MOAP is a
closed platform, MOAP Symbian devices can not be targeted by 3rd party
C++ application developers, leaving the Symbian UIs divided into S60 and
UIQ.

Nokia's S60 is neither binary- nor source-code compatible with SonyEric-
ssons UIQ. This means that an application compiled for S60 can not be run
on a UIQ device. Also the source code of an S60 program can not be directly
compiled into an UIQ application. Of course this applies to both directions,
so the same is true viewed from the UIQ position.

But as both UI platforms are layers on top of the same operating system,
the e�ort to develop an application that runs on both UI platforms can be
reduced to an acceptable minimum. Generally a clear separation of directly
Symbian related �engine code� and UI proprietary code is advised. This way
all the algorithmic logic can be jointly used by the S60 and UIQ application.
The code separated in such a way can then be individually compiled for the
desired UI platform. There also exist tools that allow for automatic porting
of UIQ or S60 source code to the respectively opposite platform.

Symbian Signed In response to security threats to earlier versions of
the Symbian OS, a new security mechanism was introduced with release
of version 9. The heart of this new security architecture is a certi�cation
mechanism. The operating system APIs have been logically regrouped into
three di�erent security levels: unsigned, signed and phone manufacturer
approval required APIs (see �gure 3.5 [13])

Symbian OS v9 is based on a �least privilege� security model, which per
se grants applications only minimum access to resources [13]. Functionali-
ties which might pose a security threat when abused need to have certain
capabilities to be used. These capabilites are granted by certi�cates. The
available certi�cates range from simply self-signed certi�cates to certi�cates
signed by Symbian or one of its o�cial test houses, which may involve the
approval of the device manufacturer. Alongside with the granted capabilities
the costs for certi�cation increase and the level of authentication varies from
mere developer authentication to full source code inspections.

Due to the signi�cant architectural change introduced with the new secu-
rity model, older applications running on Sybmian OS up to version 8 are
not binary compatible with version 9 [13]:

The essential architectural changes in Symbian OS v9 mean there

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 29

Figure 3.5: Symbian OS security levels

is no direct binary compatibility with earlier releases of Symbian
OS, however a large degree of source code compatibility has been
maintained where possible.

Java in Symbian OS

Like �gure 3.4 on page 26 depicts, Java is an integral part of the Symbian
operating system architectue. Java integration is based on standard Java ME
with the CLDC 1.1 and MIDP 2.0. MIDP 2.0 is available since Symbian
version 7.0 and the CLDC 1.0 from earlier realeses was superseded by the
CLDC 1.1 with version 8 of the OS.

According to the o�cial operating system guide14, the following optional
JSRs are currently supported by Symbian OS:

� JSR 82: Java APIs for Bluetooth � v7.0s (Bluetooth Push was added
in v8.0).

� JSR 120: Wireless Messaging API � v7.0s.

� JSR 185: Java Technology For The Wireless Industry (JTWI) � v7.0s
(this was developed for v8.0, but was backported to v7.0s).

� JSR 139: CLDC 1.1 � v8.0.

� JSR 75: FileConnection Optional Package � v8.0.

� JSR 135: Mobile Media API � v8.0.

� JSR 75: PIM Optional Package � v8.1.

14http://www.symbian.com/developer/techlib/v9.3docs/doc_source/guide/
J2ME-subsystem-guide/JavaMIDP/OptionalPackages.html, last viewed 2008-01-31

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 30

� JSR 184: Mobile 3D Graphics API � v8.1.

The device manufacturers are free to remove any of the optional APIs
listed here, as well as to add aditional functionalities.

3.4 Microsoft - Windows Mobile

The Windows Mobile family of operating systems is Microsoft's contribution
to the world of small mobile devices. The most current version is Windows
Mobile 6, which comes in three �avours:

� Windows Mobile 6 Classic
(Formerly: Windows Mobile for Pocket PC)

� Windows Mobile 6 Professional
(Formerly: Windows Mobile for Pocket PC Phone Edition)

� Windows Mobile 6 Standard
(Formerly: Windows Mobile for Smartphone)

According to Microsoft's Developer Network MSDN15 the product names
have been changed to better re�ect the realities of today's mobile device mar-
ketplace, where former distinctions between di�erent classes of devices blur
rapidly and the smartphone is becoming the universal mobile handset.

As Mike Hall, Technical Product Manger in the Windows Embedded Prod-
uct Group, clari�es in his blog16, the basis of all types of Windows Mobile
is Windows Embedded CE (Windows CE). Windows CE is a hard-realtime
component based operating system that can be customized to �t di�erent
�elds of application. There are over 700 components available on top of Win-
dows CE, ranging from .Net Compact Framework over web server and web
browser to media player. It is by default headless, meaning that it does not
have a standard user interface (UI). This allows for a broad �eld of appli-
cation, ranging from embedded devices like industrial robots, set top boxes
or automobilies, to rich graphic mobile phones and pocket PCs. Windows
Embedded CE gets licensed to Microsoft external customers, as well as to
the Microsoft internal group that builds the Windows Mobile OS.

The underlying operating system technologies and the APIs are consis-
tent across all Windows Mobile devices. The main di�erence lies in the
di�erent form factors of the target devices, e.g. screen resolution and input
facilities (QWERTY keyboard, touchscreen, ...). Generally an application

15http://msdn2.microsoft.com/en-us/library/bb158525.aspx, last viewed 2007-01-18
16http://blogs.msdn.com/mikehall/archive/2007/01/17/

windows-mobile-and-windows-embedded-ce-what-s-the-di�erence.aspx, last viewed 2007-01-
18

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 31

developed for a particular �avour of Windows Mobile should work across all
Windows Mobile devices.

Similar to the BlackBerry (see next section 3.5) productline, Microsoft o�ers
not just the mobile device platform, but provides an entire corporate soft-
ware infrastructure for tightly integrating the Windows Mobile device into
an existing business infrastructure. This is especially usefull for enterprises
that are built on a Microsoft infrastructure and already rely on the various
Microsoft server solutions. One of the key servers in such a Microsoft busi-
ness infrastructure is Exchange Server 2003 and 2007. Like the BlackBerry
architecture, it can be con�gured to directly push contents like emails to
the client instead of having to be polled pro-actively. It is also possible to
remotely control a mobile device's behaviour, by enabling policies and con-
�guring them respectively. These policies are set on the Exchange Server and
are delivered to the client through Exchange ActiveSync, each time the user
of the client starts synchronization. Through Exchange Server ActiveSync, it
is even possible to remotely erase data stored on the device if it gets stolen or
otherwise compromised. Data stored on a mobile device can also be secured
by setting a policy that forces the device to locally delete all saved data after
an administrator-settable number of incorrect passwort entry attempts [37].

3.4.1 Native Application Development

The term native in this context refers to applications that are speci�cally
tailored for Windows Mobile and are built with the corresponding available
APIs. In Windows Mobile this can either be done by writing C++ native
applications, or by developing managed applications.

Figure 3.6 shows an overview of the APIs exposed through the Win-
dows Mobile 6 SDK. All of these libraries are accessible via native C++
applications. The managed part of the Windows Mobile SDK is made up
of the Microsoft WindowsMobile class library (Microsoft Mobile managed
assemblies).

C++ Native Applications

Native applications are written in C++ and are directly compiled into the
machine language of the target processor, which in case of Windows Mobile
is the ARM-architecture. Native applications are characterized by their high
performance, low level access (can directly address the devices hardware) and
low memory footprint, and are therefore specially well suited for time critical
applications. The downside of native applications is that they are generally
harder to develop and the developer has to take care of things like memory
management, type safety or index boundaries.

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 32

Figure 3.6: Windows Mobile 6 SDK overview

As the Windows Mobile APIs (�gure 3.617) are written in native code,
one can always forthright use all available libraries when developing native
C++ applications. This is opposed to managed applications where the native
libraries are provided through a wrapper. In some situations where certain
APIs are not provided as a managed library one may be forced to resort to
the traditional native Windows Mobile APIs. Native (unmanaged) code can
be called from managed code using Plattform Invoke (P/Invoke) [31].

17http://msdn2.microsoft.com/en-us/library/bb158486.aspx, last viewed 2007-01-19

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 33

Managed Applications

Mobile managed applications are developed using the Microsoft .Net Com-
pact Framework and the Windows Mobile managed assemblies (Windows-
Mobile Class Library). The most current version of the .Net Compact Frame-
work is version 2. The .Net Compact Framework is a variant of the standard
.Net Framework for desktop and server systems, speci�cally tailored for mo-
bile devices. The architecture of the .Net Framework is similar to that of
Java. Applications are not compiled into native machine language but into a
platform independent intermediate language (IL) code. When the program is
executed, the Common Language Runtime (CLR) performs a Just-In-Time
(JIT) compilation of the IL code into the target devices native code. There-
fore the CLR acts as a Virtual Machine (VM) for the .Net Framework by
managing tasks, like garbage collection, type checking, exception handling
and security enforcement [87]. That is why applications written in the .Net
Framework are generally referred to as managed applications.

Like the KVM running the CLDC in the Java Micro Edition environ-
ment, the CLR of the .Net Compact Framework is specially designed for
resource constrained mobile devices. The CLR plus the libraries only needs
approximately 1.4 MB space in ROM [60].

Microsoft o�ers a great variety of di�erent programming languages to
be used on top of the .Net Framework, with the two most popular (and for
the Compact Framework solely available ones) being C# and Visual Basic.
Also the .Net Framework comprises a great number of libraries called the
.Net class library, ranging from GUI-programming over encryption to web
application development. As the .Net Compact Framework is a subset of the
standard .Net Framework it implements only approximately 30 percent of
the full .Net class library18. On the other side it also contains features and
classes that are speci�c to mobile embedded computing and which are not
included in the standard .Net Framework.

Some classes are not available in either of the currently available .Net Com-
pact Framework versions 1 or 2 but are exposed through Windows Mobile
managed assemblies (WindowsMobile Class Library). They are designed to
complement the .Net Compact Framework class library and make up the
managed part of the Windows Mobile SDK19 (see �gure 3.6). Windows
Mobile managed assemblies can be called from any version (1 or 2) of the
.Net Compact Framework and impose a dependency rather on the operating
system version than the Compact Framework used. E.g. Windows Mobile
5 introduced many new managed libraries (PIM, telephone interaction, . . .)
that are accessible via the Microsoft.WindowsMobile namespace and can
only be used on devices running Windows Mobile 5 (or higher).

18http://msdn2.microsoft.com/en-us/library/2weec7k5.aspx, last viewed 2007-01-19
19http://msdn2.microsoft.com/en-us/library/bb158492.aspx, last viewed 2007-01-20

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 34

The .Net Compact Framework is comparable to a Java ME con�guration
plus a basic pro�le (like MIDP). Highly portable applications that do not
need to access any device speci�c functionalities can be written without any
additional libraries. The Microsoft WindowsMobile Class Library could be
approximately compared to the additional Java APIs. Just like the Java
libraries they add aditional functionality mostly targeted to access device
speci�c or lower level features (e.g. PIM, telephone services, GPS, . . .). Both
libraries have in common that they may not be readily available on the target
device.

The ability of calling native functions from within managed code pro-
vides the developer with even more possibilities to fully exploit a device's
functionalities but increases the dependency for a given version of Windows
Mobile.

3.4.2 Java

Windows Mobile does not provide a built-in Java Virtual Machine (JVM).
Nevertheless some Windows Mobile devices are Java enabled as hardware
manufacturers can choose to integrate a JVM to valorise their device. If the
device is by default not Java enabled the customer may choose to install a
commercial VM that runs on Winodws Mobile like e.g. IBM's WebSphere
Everyplace Micro Environment (J9 JVM)20 or the NSIcom CrEme VM21.

3.5 Research In Motion - BlackBerry

The Blackberry handheld devices are the most successfull product line of
the Canadian based company Research In Motion (RIM). The platform was
initially introduced in 1999 as BlackBerry wireless email solution [55], com-
prising BlackBerry Enterprise Server Software, wireless handheld device and
radio modem. The BlackBerry family now consists of several di�erent wire-
less devices with distinct features ranging from PDA to smartphones and
di�erent software solutions targeted mostly at business oriented customers.

What sets BlackBerry apart from other mobile platforms is that it is neither
a single device nor a single operating system, but a tightly integrated mobile
ecosystem comprising handheld device and server software. The application
that BlackBerry is most famous for its wireless push services, e.g. push email,
push calendar and push contacts and scheduling. Push services allows for
directly pushing (sending) data to the handset without having the client to
proactively pull it from a server. Instead of the user having to periodically

20http://www-306.ibm.com/software/wireless/weme/, last viewed 2007-01-20
21http://www.nsicom.com/Default.aspx?tabid=138, last viewed 2007-01-20

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 35

check for new messages, with a BlackBerry device, data can be pushed to
the customers handset as soon as it is available on the server. Push email
is currently regarded as one of the most important use cases for wireless
enterprise applications.

Push services to wireless BlackBerry devices is enabled by a special server
software that connects the handset to publicly accessible messaging and col-
laboration systems. This software acts like a proxy that redirects between
the mobile device and the corporate software.

Currently there exist two BlackBerry push-service-architectures: The
BlackBerry Enterprise Solution architecture (BES) (�gure 3.7) and the Black-
Berry Internet Service architecture (BIS) (�gure 3.8) [51].

Figure 3.7: BlackBerry Enterprise Solution (BES) architecture

The BlackBerry Enterprise Solution architecture (�gure 3.7) is speci�-
cally tailored for enterprise environments. Its key component is the Black-
Berry Enterprise Server, which needs to be installed behind the corporate
�rewall. It works as a gateway between the mobile device and the intranet
applications of the company that should be exposed to the wireless clients.
The server integrates with enterprise messaging and collaboration systems
to provide mobile users with access to email, enterprise instant messaging
and Personal Information Management (PIM) tools. It can be integrated
with IBM Lotus Domino, Microsoft Exchange and Novell GroupWise 22. By
default all tra�c between the BlackBerry Enterprise Server and the wire-
less application on the BlackBerry device is automatically encrypted using
Advanced Encryption Standard (AES) or Triple Data Encryption Standard
(3DES).

BlackBerry Connect is a software for non BlackBerry devices to connect
to the BlackBerry Enterprise Server or BlackBerry Internet Service. It is
available for the operating systems Palm OS, Symbian OS and Windows
Mobile.

22http://na.blackberry.com/eng/ataglance/solutions/architecture.jsp, last viewed 2008-01-
11

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 36

Figure 3.8: BlackBerry Internet Service (BIS) architecture

For private customers and small businesses that can not have an Enter-
prise Server installed, RIM o�ers the BlackBerry Internet Service (�gure 3.8).
The Internet Service architecture o�ers centrally hosted gateways that allow
users to access public email and other internet based applications. Users can
either connect to publicly available existing mail boxes or create new ones
within the BlackBerry network.

For mobile application development targeted speci�cally at BlackBerry de-
vices, it is important to know the di�erence between these two architectures
and to be aware of the type of users that should be supported by the applica-
tion. For the two di�erent platforms there exist di�erent modes of transport
and data synchronization.

However due to the large support of the Java Micro Edition on BlackBerry
handsets, it is also possible to develop mobile applications that do not rely
on the BlackBerry server architectures.

Basically, there are three di�erent ways of developing applications for
BlackBerry devices [52]:

� Browser applications

� Java applications

� Rich Media Enhancements with the Plazmic technology

As mobile browsers will be looked at in more detail in chapter 4, they
will not be discussed here. Instead the two distinct ways of developing ap-
plications for BlackBerry devices via the Java Development Envirionment
(JDE) and the Plazmic Content Developer's Kit will be introduced in more
detail.

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 37

3.5.1 Java Applications

Although many of the mobile operating systems introduced in this chapter
o�er Java support in some way, it still has a particular signi�cance for the
BlackBerry platform.

Java is tightly integrated within all BlackBerry devices and represents the
way with the richest set of possibilities of programming for the BlackBerry
platform [51]:

It is not possible to write native code for a BlackBerry device,
developers are restricted to the Java programming language and
the Java APIs that have been publicly exposed on the BlackBerry
device.

As �gure 3.9 [50] shows, BlackBerry devices have a proprietary Java
Virtual Machine (JVM) which o�ers both Java ME standard features as well
as BlackBerry speci�c Java API extensions. Java is not just used for third
party application development but also for the core BlackBerry applications
including email, contacts, calendar, web browser, etc. [51].

Figure 3.9: BlackBerry handheld software components

Standard Java ME support

All current BlackBerry Java enabled devices support Connected Limited
Device Con�guration (CLDC) 1.1 (JSR 139) and the Mobile Information
Device Pro�le (MIDP) 2.0 (JSR 118) in the form of Java Technology for the
Wireless Industry (JTWI) (JSR 185). As mentioned in section 3.2, JTWI

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 38

additionally comprises the Wireless Messaging API (WMA) (JSR 120) as
well as the Mobile Media API (MMAPI) (JSR 135).

For address book and calendar access the PIM APIs of the Personal
Digital Assistant Pro�le (PDAP) (JSR 75) are supported. Devices that have
an GPS module included, feature the Java ME Location API (JSR 179).

By using only standard Java ME classes, applications can be developed
to run on any JTWI enabled device.

In detail the supported APIs are [51]:

� Connected Limited Device Con�guration (CLDC) 1.1 (JSR 139)

� Mobile Information Device Pro�le (MIDP) 2.0 (JSR 118)

� Java Technology for the Wireless Industry (JTWI) (JSR 185)

� Wireless Messaging API (WMA) 1.1 (JSR 120)

� Mobile Media APIs (MMA) 1.1 (JSR 135)

� PIM APIs of the Personal Digital Assistant Pro�le (PDAP) (JSR 75)

� Location API for Java ME for BlackBerry devices that have a GPS
module (JSR 179)

Java API extensions for BlackBerry

For greater support of the particular hardware, BlackBerry also supports a
large set of additional Java APIs that are not part of the standard Java ME
speci�cation. Although it is not necessary to use these speci�c classes, they
can often provide greater features and functionality over what is supported
within the standard Java ME speci�cation, because they are tailor-made for
the BlackBerry devices.

The following groups of Java APIs are additionally available for the
BlackBerry platform [51]:

� User Interface APIs

� Persistent Data Storage APIs

� Networking and I/O APIs

� Event Listener

� Application integration APIs
Used to integrate with the existing BlackBerry applications like email,
phone, calendar, browser and task list.

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 39

� Additional Utilities
Additional APIs for data encryption and compression, XML parsing,
bluetooth connectivity, location based services, etc.

The BlackBerry speci�c libraries o�er extensive support of phone-related
features. It is e.g. possible to view, add or change user's contacts in the
address book, initiate phone calls, change phone options or to manipulate
call logs. Usage of these APIs is only available for signed applications. Every
developer can obtain a set of keys for signing its applications at the RIM
BlackBerry website23. These keys are basically free of charge but an ad-
ministration fee of USD 100 (at the time of writing of this paper) has to
be payed. The actual application code will not be checked by Research In
Motion. The certi�cates are only for identifying the author of an applica-
tion and thus trying to avoid malicious software by anonymous programmers.

BlackBerry applications can be developed as standard Java ME applications
extending the MIDlet class de�ned in the MIDP speci�cation. This is op-
posed to BlackBerry speci�c programs which are built as CLDC Applications
by extending the class UiApplication. Whereas MIDlets can be ported to
any device featuring the used Java APIs, usage of BlackBerry UiApplications
is restricted to the BlackBerry platform and devices.

Besides of the extended possibilities o�ered by the BlackBerry spec�c classes,
the bene�ts of using the CLDC Application approach over traditional Java
MIDlets include:

� MIDlets can not use the BlackBerry User Interface (UI) APIs which
are tailor-made for the BlackBerry devices

� MIDlets can not be designed to automatically start in the background
when the device powers on

� BlackBerry CLDC Applications can run active background threads
even if the application has been closed by the user

� CLDC Applications can exchange information with other applications
through inter-process communication

3.5.2 Rich Media Enhancements (Plazmic technology)

The Plazmic technology provides a way of enhancing custom BlackBerry
Java or browser based applications with rich multimedia content. With the
Plazmic Content Developer's Kit (CDK) content developers can create an-
imated graphics and multimedia screens in the Scalable Vector Graphics

23http://www.blackberry.com/developers/downloads/jde/api.shtml, last viewed 2008-01-
13

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 40

(SVG) standard. By using the CDK the content creators don not require
Java programming or web development skills. The media enhancements are
created with an application similar to Adobe Flash. Graphical objects can be
placed on a timeline and modi�ed (e.g. rotated, scaled, translated, etc.) as
the playback advances. In fact, a subset of Adobe ShockWave Flash (SWF)
�les can even be converted into the SVG format [53].

The SVG-applications can be viewed in the BlackBerry browser as direct
downloads from the internet, or embedded in a custom BlackBerry Java ap-
plication. With the classes provided in the net.rim.plazmic.mediaengine
packages the Plazmic content can be loaded from local storage or the network
and played within the custom application. The possible applications created
with the Plazmic technology range from animated �lms as well as games to
entire themes that may customize the look of the BlackBerry device Home
screen, dialogs, menus and the idle screen [53].

3.6 Access - Palm/Garnet OS

The Access Garnet Operating System was formerly known as Palm OS and
developed by Palm, Inc. With the introduction of the Palm Pilot in 1996,
Palm greatly helped evolve the PDA market. Although there have been other
PDA devices available by the mid 1990ies, what set the Palm Pilot apart
from its competitors, was its ease of synchronization with desktop computers.
It allowed the users to synchronize with their desktop applications by just
pressing a single button. The Palm devices soon became very popular in the
following years and have become the defacto embodiement of the Personal
Digital Assistant (PDA) device [87].

The operating system for the Palm devices has ever since been Palm
OS. Versions up to 4 have been built for Motorolas DragonBall-processors
from the 68,000 (68K) family of processors and did not support multitasking.
Starting with version 5, Palm OS now is designed for ARM processors and
features multitasking support. For keeping compatibility with applications
developed for older Palm OS versions, Palm OS 5 (and higher) o�ers the
built-in Palm Application Compatibility Environment (PACE) which pro-
vides a 68K application environment that is equivalent to Palm OS 4.124.

After the acquisition of Handspring, Inc. in 2003, Palm was divided into
PalmOne and PalmSource. PalmSource continued the development of the
Palm OS whereas PalmOne was the manufacturer of the Palm handheld
devices [87]. In September 2005 the Tokio based company ACCESS Ltd.
announced that it acquired the rights of the Palm OS from PalmSource25.

24http://www.access-company.com/developers/documents/docs/palm_os_garnet_
simulator53/Simulator_Concepts.html, last viewed 2008-01-17

25http://www.access-company.com/news/press/PalmSource/2005/090905_access.html,

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 41

In 2005 PalmOne changed its name back to Palm and now licenses the Palm
OS from ACCESS Ltd. Due to the fact that Palm, Inc. holds the rights to
the name Palm26, Palm OS Garnet is now o�cially called ACCESS Garnet
OS, with only Palm Inc. being entitled to rebrand their (slightly modi�ed)
version under the name Palm OS.

Presently the most current version of the ACCESS Garnet OS readily
deployed on a device is 5.4. Because of the major di�erences between version
4 and 5 and the already large di�usion of Palm OS 5 (introduced in June
2002), this document will only refer to ACCESS Garnet OS version 5.4.

Palm Inc. is not the only company licensing ACCESS Garnet OS. A
complete list of Garnet OS powered devices can be found at the company's
website27. On the other side not all Palm devices are still based on Palm OS.
Since 2005 some Palm handsets are powered by Windows Mobile. At present
two of the nine available Palm devices were based on Windows Mobile28.

3.6.1 Native application development

With more than 20,000 applications29 available, the Garnet OS is the mo-
bile operating system with the industry's largest collection of third-party
software.

Since its appearance in 1996 Palm OS is already available in its 5th gen-
eration. Naturally the operating system matured with the capabilities of the
devices it was deployed on. To minimize a seemingly inevitable fragmenta-
tion of the platform arising from the di�erent versions, Palm OS applications
are binary compatible with each other [82]:

If you write a brand new application today, it can run on all
versions of the operating system provided the application does
not use any new features. In other words, if you write your ap-
plication using only features available in Palm OS 1.0, then your
application runs on all handhelds. If you use 2.0 features, your
application won't run on the earliest Palm Powered handhelds,
but it will run on all others, and so on.

Even after the switch from the Motorola DragonBall 68K processor to
the ARM processor architecture introduced with version 5 of the operating
system, this compatibility remains intact. As �gure 3.10 [82] shows this is
achieved by the Palm Application Compatibility Environment (PACE) that

last viewed 2008-01-17
26http://www.palm.com/us/company/pr/2005/052405b.html, last viewed 2008-01-17
27http://www.access-company.com/products/accesspowered/index.html, last viewed

2008-01-17
28http://www.palm.com/us/products, last viewed 2008-01-17
29http://www.access-company.com/products/garnet/whygarnetos/index.html, last viewed

2008-01-17

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 42

sits between the core Palm OS libraries and the applications. PACE emu-
lates the 68K-family processor allowing older Palm applications to run with-
out recompilation within the new environment. Due to its well established
development paradigm even new Garnet OS applications are commonly still
created as 68K applications.

Figure 3.10: Palm Application Compatibility Environment (PACE)

As a consequence of the processor architecture change there are three
di�erent types of native Garnet OS applications [45]:

� Palm OS 68K Applications

� PACE Native Objects

� Palm OS Protein Applications

All three types have in common that they are developed with the C/C++
programming language. Although there is support for other programming
languages, C is most widely used for Palm OS software development.

Palm OS 68K Applications

Palm OS 68K applications are guaranteed to run on all Palm OS enabled de-
vices. As the name suggests these applications are compiled for the Motorola
DragonBall 68K processor architecture. Up to version 4 of Palm OS these
applications will natively be run by the device processors. As from version
5 the 68K applications will operate in the Palm OS Compatibility Environ-
ment (PACE). As the number of libraries grew along with the version of the
operating system, one of course has to take into account the available APIs
when trying to target a speci�c platform. For still being able to use newer
APIs while trying to address older versions of the operating systems, there
exists the PalmOSGlue library. The PalmOSGlue library runs on Palm OS

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 43

2.0 and later. When a PalmOSGlue function is called, it either uses the
appropriate function available in the ROM, or if the function doesn't exist,
executes a simply equivalent of it [82].

According to the o�cial Garnet OS SDK Documentation, the �Palm OS
Programmer's Companion Volume I� [82], most Garnet OS applications are
developed as 68K applications, as they do not need extended libraries or code
that is natively optimized for the ARM-processor. If the 68K application
does not perform adequately well, then there is the chance to optimize the
code for the most time critical parts of the application by employing PACE
Native Object calls.

Even with calls to the native libraries of the new processor architecture,
Palm OS 68K applications follow the development paradigm of the very �rst
Palm application back in 1996, with the most notably drawback being that
they can not be multithreaded.

PACE Native Objects

PACE Native Objects (PNO) are somewhat in-between the traditional 68K
and the newer Protein applications. They follow the same design principles
and are therefore bound to the same limitations as the 68K applications,
but can take advanatage of the processing power the new ARM-architecture
o�ers. With the PceNativeCall() function a developer can make ARM-
native calls to clearly identi�ed segments of the 68K application that need
the performance impact the ARM-processor may o�er.

Palm OS Protein Applications

Garnet OS Protein applications can take full advantage of all new facilities
introduced with the new Palm OS version 5. Some of the most important
enhancement include: multithreading, extended database support and a new
multimedia framework. Protein applications are compiled for the ARM-
architecture.

3.6.2 Java

A Java Virtual Machine (JVM) is not part of the Garnet OS architecture
and also not included on Garnet OS powered devices by default. However
Palm o�ers a free download of the WebSphere Everyplace Micro Environ-
ment from IBM for its newest Palm OS powered devices30. Customers with
compatible but older devices may download the WebSphere Everyplace Mi-
cro Environment for a small fee31.

30http://www.palm.com/us/support/jvm/, last viewed 2008-01-18
31At the time of writing of the thesis the fee was USD 5.99

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 44

The WebSphere Everyplace Micro Environment is IBM's version of the
Java Micro Edition (ME), centered around their mobile VM J9. The J9 VM
basically supports CLDC as well as CDC. The version available as download
for the Palm Garnet OS supports CLDC 1.1 with MIDP version 2.

3.7 Apple - iPhone OS

Since its o�cial release on June 29 200732, no other single mobile device
has recently gained as much attention as Apple's iPhone. With a strong
emphasize on its software applications and a new desktop application like
mobile web sur�ng experience, many people see the iPhone at the spearhead
of the new wave of mobile computing. Its combination of phone, business
applications (organizer, mail, . . .) and consumer device (iPod) makes it a
prototype represantative of a smartphone as the universal mobile terminal.

Until the o�cial release of the iPhone SDK on March 6 200833 little in-
formation about the iPhone operating system has been known to the public.
Only two distinct devices, the iPhone and the iPod touch [6], use the iPhone
OS as their native operating system. As both devices share the same touch
centric form factor, the iPhone OS is highly specialized for this very kind of
device.

Figure 3.11: iPhone OS technology layers

As �gure 3.11 from the iPhone developer website [6] shows, the Cocoa
Touch layer is an integral part of the iPhone OS. Cocoa is the application
(development) environment for both the Mac OS X and the iPhone OS [5].
It consits of software libraries, a runtime and an integrated development
environment (IDE). The Cocoa libraries are mostly written in Objective-C,
so native application development for the iPhone also is done with Objective-
C.

32http://www.apple.com/pr/library/2007/06/28iphone.html, last viewed 2008-04-03
33http://www.apple.com/quicktime/qtv/iphoneroadmap/, last viewed 2008-04-03

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 45

The kernel used in the iPhone OS is a variant of the March Kernel as it
is contained in Mac OS X. The lower layers and the core system architecture
are also similar to that in Mac OS X. The Core OS and the Core Services
layer contain the fundamental interfaces for iPhone OS, like POSIX threads,
UNIX sockets or a SQLite database. The interfaces on these layers are mostly
C-based [6].

The Media layer is a mixture of C and Objective-C classes and provides
interfaces for 2D and 3D drawing, audio, video and OpenGL ES amongst
others [6].

3.7.1 Web Application Development

Web application development is particularly important for the iPhone as it
has been the only way of iPhone application development before the release
of the SDK34. The browser on the iPhone is an Apple Safari, which uses
the same Web Kit engine as its desktop counterpart. This makes it a re-
markable e�ective mobile browser with support for all the latest modern web
standards, such as [8]:

� HTML 4.01

� XHTML 1.0

� CSS 2.1 and partial CSS3

� ECMAScript 3 (JavaScript)

� DOM Level 2

� AJAX technologies, including XMLHTTPRequest

More information on mobile web applications is provided in chapter 4.

3.7.2 Native Applications

Native application development for the iPhone is possibly since the release
of the SDK in March 2008. It is done on basis of the Cocoa application
environment together with the Objective-C language. The SDK o�ers many
features for software development that are not available from within a web
application [7]:

� Access to low-level features such as threads, ports, and standard I/O

� Support for handling Multi-Touch events

� Support for security features such as encryption, certi�cate manage-
ment, and trust policies

34http://www.apple.com/pr/library/2007/06/11iphone.html, last viewed 2008-01-30

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 46

� Support for rendering 2D and 3D graphics

� Support for game development

� Access to the accelerometer data

� Support for taking pictures with the camera

� Support for BSD sockets and higher-level socket abstractions

� Access to the user's contact information

� Access to the user's photo library

� Access to the user's current location information

� . . .

3.7.3 Java

The iPhone does not support any version of Java [8], but vice president of
Java marketing at SUN Microsystems Eric Klein announced, that SUN will
be releasing a Java ME based JVM as a free iPhone application developed
with the iPhone SDK in 200835.

3.8 Mobile embedded Linux

Due to its open nature and the resulting adaptability, Linux has made its way
on a variety of embedded devices36 like mobile phones, PDAs, wireless access
points, audio/video entertainment devices, robots, automotive devices, etc.

Embedded Linux systems can either be hard real time or soft real time
[87]. Hard real time systems must respond in a deterministic way every
time a relevant event occurs. Soft real time systems are also required to
respond in a timely fashion, but a de�nite answer time can not be guaranteed.
Hard real time systems are typically found in vital applications like medicine
or automotive controls. Mobile Linux on embedded consumer devices like
smartphones fall into the category of soft real time systems.

As diverse as the application range is the architecture of embedded Linux
systems. The characteristics common to all embedded Linux systems are [87]:

� A pre-emptive monolithic kernel with suport for multitasking and mul-
tithreading.

35http://www.infoworld.com/article/08/03/07/sun-iphone-java_1.html, last viewed 2008-
04-04

36For a list of some currently Linux powered devices see: http://www.linuxdevices.com/
articles/AT4936596231.html, last viewed 2008-02-02

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 47

� A set of libraries and modules usually provided by the open-source com-
munity enabling technologies like Bluetooth, wireless LAN, or Graph-
ical User Interfaces.

� Little or no licensing fees and full access to source code through the
use of public and open licenses.

The diversity of embedded Linux systems means that application devel-
opment di�ers signi�cantly from system to system, as the conceptual simil-
iarities are usually found at a low operating system level. The GUI toolkits
greatly a�ecting the application programming-paradigm and -language range
from GTK+ (GIMP-Toolkit) over QTEmbedded to other solutions like the
Open Handset Alliance (OHA) Android SGL.

This fragmentation is currently one of the biggest problems of mobile em-
bedded Linux as it discourages third-party developers to enrich the platform
with custom applications.

Lately several attempts have been made to consolidate the fragmented
Linux platform and to create a consistent application framework that runs
applications accross di�erent Linux-based devices. These attempts come
from non-pro�t standard groups like the Linux Phone Standards Forum
(LiPS), the Linux Foundation (formerly OSDL) or the Consumer Electronics
Linux Forum (CELF) as well as from market-oriented industry alliances like
the Open Handset Alliance (OHA) or the Linux Mobile (LiMo) foundation.
The non-pro�t standard groups are involved with the advancement of Linux
as an open source platform for mobile devices and the standardization of
mobile Linux APIs. They do not provide direct marketable Linux based
mobile software stacks. The industry alliances in contrast provide a readily
deployable Linux based ecosystem that can be licensed and incorporated by
handset manufacturers right away.

3.8.1 MontaVista - Mobilinux

According to the MontaVista website 37 Mobilinux is currently the most
widely deployed mobile embedded Linux operating system. It is used in 90 %
of Linux-based smartphones with overall more than 35 million phones and
other mobile devices running on it. As a commercial-grade Linux platform
its sources are not publicly available.

Figure 3.1238 depicts the architecture of the Mobilinux platform. The
underlying graphics toolkit is GTK. Application layer technologies like web
browser, Personal Information Manager (PIM) or a Java Virtual Machine
(JVM) are not directly provided by the Mobilinux ecosystem. They are

37http://www.mvista.com/product_detail_mob.php, last viewed 2008-02-04
38http://www.mvista.com/downloads/MontaVista_Mobilinux_5_datasheet.pdf, last

viewed 2008-02-04

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 48

rather added by the licensees as third party add-ons. MontaVista has re-
cently joined the ACCESS Connect Ecosystem (ACE) partner program 39.
The Japanse based company ACCESS which develops the ACCESS Palm/-
Garnet OS also provides a Linux-based mobile phone architecture (see next
section).

Figure 3.12: MontaVista Mobilinux architecture

3.8.2 ACCESS - ACCESS Linux Platform (ALP)

The Japanese company ACCESS that has acquired PalmSource, provider
of Palm OS, in 200540 is developing a Linux-based mobile ecosystem called
ACCESS Linux Platform (AlP) (see �gure 3.1341).

Presently no ALP based handset has yet been commercially deployed.
According to market research institute OVUM42, ALP is expected to be
used in a handset by mobile network operator Orange due in the �rst half
of 2008.

The ALP is designed to replace the existing Garnet/Palm OS. Due to
a compatibility layer all legacy Palm OS applications are expected to run

39http://www.access-company.com/news/press/ACCESS/2007/20071023_montavista.
html, last viewed 2008-02-04

40http://www.access-company.com/news/press/PalmSource/2005/111405_access.html,
last viewed 2008-02-04

41http://alp.access-company.com/�les/ALP2007_08.pdf, last viewed 2008-02-04
42http://www.ovum.com/news/euronews.asp?id=6472, last viewed 2008-02-04

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 49

on the new platform without recompilation. Capable of running Palm/Gar-
net OS, Java, and GTK+ native Linux based applications, the ALP stack
promises to support a huge application base. As the focus of the ALP is
primarily on higher level mobile-phone software and the application develop-
ment stack, ACCESS has recently anounced a partnership with Montavista,
of which the focus is predominately on the kernel and the lower level Linux
APIs (see previous section).

Figure 3.13: ACCESS Linux Platform (ALP) architecture

3.8.3 Open Handset Alliance - Android

Open Handset Alliance (OHA) Android has currently brought huge atten-
tion to Linux based mobile systems. Since the OHA is spearheaded by In-
ternet giant Google, the new platform is recently one of the most discussed
issues in the realm of mobile computing. It has long been rumoured that
Google is about to release its own integrated highend smartphone like Ap-
ple's iPhone with unique hardware and a closed operating system. Myths
about the alleged �GPhone� have been clari�ed on November 5, 2007 when
Google Inc. o�cially announced the Open Handset Alliance with its An-

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 50

droid mobile platform43. Instead of a single integrated mobile device, OHAs
Android is a Linux-based operating system and software stack which will
be deployed on many di�erent devices from various handset manufacturers.
Its goal is to consolidate the fragmented mobile Linux community and to
provide a pseudo-standard application development environment which runs
Android applications across a wide range of di�erent handsets. Aside from
Google the OHA counts over 30 founding members ranging from semicon-
ductor companies, handset manufacturers, mobile operators to software and
commercialization companies. A complete list of the current members can
be found at the OHA website44.

Currently no Android powered device has yet been released. According
to a Google press release45, the �rst handsets built on the new platform will
become available in the second half of 2008.

Architecture

Figure 3.1446 depicts the major components of the Android operating system.

Figure 3.14: Android architecture

43http://www.google.com/intl/en/press/pressrel/20071105_mobile_open.html, last
viewed 2008-02-07

44http://www.openhandsetalliance.com/oha_members.html, last viewed 2008-02-07
45http://www.google.com/intl/en/press/pressrel/20071112_android_challenge.html, last

viewed 2008-02-07
46http://code.google.com/android/what-is-android.html, last viewed 2008-02-07

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 51

As with any other mobile embedded Linux platform, the Linux Kernel
forms the basis of the Android architecture. Android builds on a 2.6 Linux
Kernel for core system services like security, process and memory manage-
ment, network stack or driver model.

The layer above represents the native libraries. The green color indicates
that these libraries are written in either C or C++. They provide typical core
library functionalities like classes for basic GUI operations, media codecs,
security certi�cates or font rendering. Just like the Safari browser used on
the iPhone, the browser embedded in the Android OS is also built on the
Open Source Webkit browser-engine.

The next component in the Android operating system the Android Run-
time depicts something very untypical for Linux based mobile systems. It is
a special Java Virtual Machine responsible for running all the applications
in the Android environment. No applications, neither the pre-installed core
applications like email, SMS or calendar, nor any third-party applications
can be written in native C or C++, but have to be developed using Java47.
This way the VM serves as an abstraction layer between the core system
components and the application development framework. This bears some
signi�cant similarities to the BlackBerry platform. What completely sets
Android apart from other Java based platforms is its VM called Dalvik Vir-
tual Machine, which is not at all compliant with the reference SUN JVM, or
KVM.

The main di�erences are48:

� The Dalvik VM is register-based and not stack-based.

� The Dalvik VM uses a proprietary byte-code format called Dalvik Ex-
ecutable (.dex).
In order for applications compiled on the desktop with a standard Java
VM to be run on Android, their bytecode �rst has to be transformed
into the .dex-format. This is done with the help of the dx tool in-
cluded in the Android SDK and can be made by hand or automated
at build-time.

� The libraries are not standards conform.
The core libraries used by the Android Runtime are neither Java ME
nor Java SE compliant. The bigger part of the standard Java APIs are
Java SE libraries. From the Micro Edition, only the Java binding for
OpenGL ES is implemented. Other libraries contained in the Android
platform come from Open Source projects like the Apache Commons
or JUnit as well as Google. All in all the by default included pack-
ages should be more familiar to desktop than to mobile application

47http://code.google.com/android/kb/general.html#c, last viewed 2008-05-21
48http://code.google.com/android/what-is-android.html, last viewed 2008-02-07

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 52

developers. A complete list of packages can be found on the Android
website49.

As stated in the o�cial online documentation50, every Android applica-
tion runs its own process with its own instance of the Dalvik Virtual Machine.

The last building block of the Android architecture is the Application
Framework, which is the direct basis for built-in as well as third party appli-
cations.

Standard Java and Java ME applications

Despite of the fact that all Android applications are written in Java, the
platform is neither compliant with Java SE nor with any of the two Java
ME pro�les (CLDC and CDC). To run existing Java applications on top of
Android all the same, the currently most promising approach is probably to
port them.

Open Handset Alliance founder member Esmertec has announced that its
commercial embedded Java Virtual Machine Jbed can be made available to
members of the OHA on demand51. This means that handset manufacturers
can choose to integrate the Jbed VM into their Android platform stack and
in such a way make some Android phones Java ME enabled out of the box.

3.8.4 Others

Besides the already mentioned initiatives, many other manufacturers, soft-
ware development companies and consortiums are currently developing or
already have developed mobile Linux platforms. Amongst others they com-
prise:

� LiMo Foundation
(http://www.limofoundation.org/)

The LiMo Foundation was founded at the beginning of 2007 by hard-
ware manufacturers and network operators Motorola, NEC, NTT Do-
CoMo, Panasonic, Samsung and Vodafone [29]. Its mission is to create
an open, Linux based mobile middleware platform which can be ex-
tended and customized by mobile stakeholders like device manufactur-
ers and network operators in a uniform way. As a middleware provider,
the LiMo platform o�ers the Linux Kernel and all essential operating
system and user interface components. The lowest layer including de-
vice drivers and hardware interfaces, as well as the topmost application

49http://code.google.com/android/reference/packages.html, last viewed 2008-02-07
50http://code.google.com/android/what-is-android.html, last viewed 2008-05-22
51http://www.esmertec.com/solutions/mobile_multimedia/android_platform/index.

shtml, last viewed 2008-02-07

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 53

layer, are left open for the foundation members for device and UI de-
sign customization and di�erentiation. The application user interface
framework is based on GTK+ [28]. By the agreement of the industry
on one standard, LiMo expects lower cost of development and faster
time to market for new devices. Software development SDKs for native
C/C++, Java and Webkit programming are scheduled to be released in
the second half of 2008. By February 2008, 18 handsets from 7 vendors
have already been commercially deployed on the LiMo platform [29].

� Nokia - maemo
(http://maemo.org)

Maemo is an open source mobile platform for Nokia Internet tablet
handhelds like the N770, N800 or N810 and other Linux-based devices.
Since it does not provide a telephony stack it is not appropriate as a
smartphone operating system. The maemo Kernel is a Linux 2.6 Ker-
nel, based on the ARM processor family branch, which can be modi�ed,
recompiled and �ashed by the developer [41]. It largely relies on the
same open source Linux components found in the Debian distribution.
The user interface architecture builds on GTK+/GNOME. Its user in-
terface Hildon UI, is customized for the screen size and usage scenarios
of typical touch screen enabled mobile devices52.

� OpenMoko
(http://www.openmoko.com)

OpenMoko is a project of the Taiwanese manufacturer FIC aimed at
building an entirely open Linux mobile phone. The reference device
is the FIC Neo1973, which comes standard with a GTK+/GNOME
based Linux-stack provided by OpenMoko53. OpenMoko also posted
the CAD (Computer Aided Design) �les of the Neo1973 under a cre-
ative common license, which provides a completely in-depth look at the
internals of the device. At the time of writing of this thesis, the phone
was solely aimed at developers with strong system and programming
skills54.

� SUN Microsystems - JavaFX Mobile
(http://java.sun.com/javafx/mobile/)

JavaFXMobile is a forthcoming mobile software system based on Linux
and Java by SUN Microsystems. It is the successor of the SavaJe rich
Java mobile platform from SavaJe technologies, which Sun acquired on
May 8, 200755. Its basic architecture is very similar to Open Handset

52http://www.forum.nokia.com/main/platforms/maemo/index.html, last viewed 2008-04-
05

53http://linuxdevices.com/news/NS5429713730.html, last viewed 2008-04-05
54http://wiki.openmoko.org/wiki/Developer_preview, last viewed 2008-04-05
55http://www.sun.com/software/savaje/index.xml, last viewed 2008-04-04

CHAPTER 3. NATIVE DEVELOPMENT PLATFORMS 54

Alliance's Android. Java serves as the primary application develop-
ment language and o�ers full access to the device capabilities. Under-
neath lies a Linux Kernel and a thin layer of native low-level services
and libraries. Unlike Android, JavaFX Mobile will o�er full support
for Java ME, which means that Java ME applications should work
out-of-the-box with little or no porting. At the time of writing of this
thesis no JavaFX Mobile based handset, SDK or simulator has yet been
o�cially available.

� Trolltech - Qtopia Phone Edition
(http://trolltech.com/products/qtopia/phone_edition)

The Norwegian company Trolltech is mostly famous for developing Qt,
a multi-platform C++ GUI framework which is used amongst others
by the Linux Desktop environment KDE. Qtopia is an application plat-
form based on Qt. Qtopia Phone Edition is an application platform
and user interface for Linux powered mobile phones. Besides Qtopia
and other native applications it o�ers a Java integration for running
Java ME applications with a native Qtopia look and feel.

It can be deployed on mobile phones based on Intel's x86 architecture
as well as ARM processors. The current minimum Kernel requirement
is 2.4. The main audience of Qtopia Phone Edition are device manu-
factureres that build customized Linux phones on top of it. According
to Trolltechs website56, already millions of Linux phones powered by
their application platform have shipped.

Trolltech also o�ered a reference mobile ecosystem in the form of the
Qtopia Greenphone which was an open full functional Linux mobile
device loaded with Qtopia Phone Edition. Trolltech announced that
the Greenphone has been sold out and will not be produced any more.
Instead Trolltech suggests OpenMoko's Neo1973 as a phone hardware
for Qtopia Phone Edition development57.

On January 28, 2008, Trolltech was acquired by Nokia58.

56http://trolltech.com/products/qtopia/phone_edition, last viewed 2008-04-05
57http://trolltech.com/products/qtopia/greenphone/greenphone_pricing, last viewed

2008-04-05
58http://trolltech.com/company/newsroom/announcements/press.2008-01-28.

4605718236, last viewed 2008-04-05

Chapter 4

Mobile Web Applications

4.1 Overview

Web applications have successfully proven to be technical enablers for Ser-
vice Oriented Applications in the realm of desktop computing. Their major
advantage over native applications lies in the independence from a particular
operating system. The nature of web applications is per se distributed on
basis of a client-server architecture. The only requirement for the client is to
have a browser installed, which is capable of viewing the contents delivered
by the server. Usually web applications adhere to a thin-client paradigm,
meaning that most of the application logic is done on the server. With
advanced programming languages and frameworks available on the server,
a contemporary web application usually ful�lls various steps by processing
a request, involving complex calculations, database access, communication
with other servers, etc., before sending simpli�ed content (usually HTML)
back to the client. Today's modern web application frameworks overcome
traditional drawbacks of web application development, like the stateless na-
ture of HTTP, the tedious composition of HTML, etc.

Also desktop web browsers have matured, providing a strong support
for client technologies like (X)HTML, XML, CSS, JavaScript, Java Ap-
plets, Adobe Flash, Apple Quicktime, etc. The increasing level of con-
formance of the browser-manufacturers to web technologies standardized
through the World Wide Web Consortium (W3C)1 allows for writing cross-
platform browser applications with little or even no recoding.

With the advent of dynamic lightweight client technologies like Asyn-
chronous Javascript And XML (AJAX), the SOA character of web applica-
tions has even been further augmented. Given AJAX's asynchronous nature,
it is possible to bypass the static request-response roundtrip of traditional
web applications, which allowed client content retrieval only on a �per-page�
basis, in favour of a dynamic approach that only fetches the information

1http://www.w3.org/, last viewed 2008-02-14

55

CHAPTER 4. MOBILE WEB APPLICATIONS 56

needed. This reduces the bandwidth needed and greatly improves the users'
expierence. This class of new web applications is often referred to as Web
2.0, a term which was originally coined by publisher Tim O'Reilly2. In a nut-
shell it describes �symmetric� browser based applications, which allow the
user to interact and push data to the server to the same extent as receiving
information.

Considering all the bene�ts of modern web applications they seem to be
an ideal solution for a mobile Service Oriented Architecture. The fact that
third-party applications for the iPhone could have initially only been de-
veloped as web 2.0 applications3 can also be seen as an indicator of the
importance of this technology. The greatest promise of mobile web applica-
tions over native applications is the potential of not being tied to a speci�c
platform. This is especially valuable in such an unconsolidated market as
the mobile handset market. Another major advantage of mobile web appli-
cations is the easy deployment. As no software (besides the browser) has to
be installed locally on the client, software modi�cations and add-ons only
have to be applied to the server side.

Also, web browsers execute in a �sandbox�, which means that they have
little to no potential of harming the device.

Though this is a big advantage concerning security, it is also one of the
biggest downsides of mobile browser applications by contrast to native ap-
plications. They can not directly interact with the devices native APIs and
thus can not fully exploit the augmented mobile context awareness. Also
web applications rely more on an intact network connection than their na-
tive counterparts, as their entire appearance is downloaded from the server.

This chapter provides an overview of the evolution of mobile web technolo-
gies and highlights the possibilities of today's modern AJAX based browser
applications.

4.2 Traditional Mobile Web Applications

Mobile web applications followed a di�erent path of evolution than desktop
applications. This di�erence was motivated by the resource-scarceness and
the network heterogeneity of (former) mobile devices. In the late 1990ies, the
wireless industry was seeking for a standard way of delivering Internet data
to wireless clients over the existing cellular networks (for a brief overview of
cellular networks see 2.2.1).

As a consequence, in June of 1997, Nokia, Ericsson, Motorola and Un-

2http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html,
last viewed 2008-02-14

3http://www.apple.com/pr/library/2007/06/11iphone.html, last viewed 2008-02-14

CHAPTER 4. MOBILE WEB APPLICATIONS 57

wired Planet formed the Wireless Application Protocol (WAP) Forum [1,
Chapter 24]. The WAP Forum4 served as a standards body for creating the
Wireless Application Protocol (WAP).

WAP has been the primary enabler of mobile Internet in Europe and the
U.S.A. and consists in essence of two building blocks [80]:

� WAP Protocol Stack

� Wireless Application Environment (WAE)

Its primary design goals were to enable delivery of Internet content to mobile
devices by abstracting from the underlying bearer technologies (e.g. GSM,
GPRS, EDGE, CDMA, . . .) and to allow for application development that is
similar to traditional web application development, but o�ers optimizations
tailored speci�cally at the limited target devices. Since the �rst release of the
WAP 1.0 speci�cation in 1998 [80], WAP has meanwhile evolved into WAP
2.4. There are considerable di�erences between the two major versions of
WAP, which re�ect the rapid evolution of the wireless mobile landscape of
the past few years.

4.2.1 WAP 1.x

Protocol Stack

As shown in �gure 4.1 [77], the physical, datalink and network layers of the
ISO-OSI reference model are not directly adressed by the WAP protocol
stack. These basic network functionalities are provided by the bearer tech-
nologies. The WAP protocol stack abstracts from these bearer technologies
and can be implemented on top of any wireless network.

The most important protocol in the WAP stack is the Wireless Datagram
Protocol (WDP), which acts as the interface between the rest of the WAP
protocols and the underlying network. WDP is the equivalent to the User
Datagram Protocol (UDP) used in land-based Internet technology. Equally
to UDP, WDP o�ers an unreliable connectionless network service, which was
chosen because of the varying connection qualities of wireless networks.

Wireless Transport Layer Security (WTLS) provides a means of secure
WAP connections, similar to TLS 1.0. Wireless Transaction Protocol (WTP)
provides request-repsonse services to the Wireless Application Environment
(WAE), with every request-response pair being one transaction. The �-
nal layer before the WAE, the Wireless Session Protocol (WSP) provides
HTTP/1.1 functionality to theWAP application layer on top of WTP (connection-
mode) or WDP (connectionless).

4In June 2002 the WAP Forum was transformed into the Open Mobile Alliance,
which today counts nearly 200 company-members. http://www.openmobilealliance.org/
AboutOMA/FAQ.aspx, last viewed 2008-02-14

CHAPTER 4. MOBILE WEB APPLICATIONS 58

Figure 4.1: WAP 1.0 protocol stack

Application Environment (WAE)

The Wireless Application Environment (WAE) is what is usually associated
with WAP, since it is the most important layer for the application developer.
It provides a number of di�erent components that enable the development
and execution of mobile WAP based Internet applications:

� Wireless Markup Language (WML)

� WMLScript

� Wireless Telephony Application Interface (WTAI) Speci�cation

� Microbrowser Speci�cation

Wireless Markup Language (WML) WML is the markup language
used for WAP 1.x applications. It is a true subset of XML, but like all
WAP based technologies it is not de�ned by the W3C, but the WAP Fo-
rum. Although it o�ers familiarities with the standard World Wide Web
(WWW) markup language HyperText Markup Language (HTML), they are
not compatible. WML clearly re�ects its target of mobile devices with very
limited resources and small (grayscale) screens. One WML-�le consists of
a deck, that can be devided into several cards. A card represents exactly
one output screen. Several cards in one deck (=one �le) can improve the
responsiveness of the application since not for every new screen a page has
to be downloaded. Decks can only contain a limited number of cards and are
used to group together logical units, like the booking of a ticket. When the
last card of a deck is reached, a new deck can be polled from the server. The
information from di�erent cards can be collected with the built in variables.

CHAPTER 4. MOBILE WEB APPLICATIONS 59

Every form element automatically is a variable, but they can also be de�ned
explicitly.

Support for HTML layout-tags like tables, headings, etc. is rather limited
or not provided at all. Like in HTML prior to the introduction of Cascading
Style Sheets (CSS), layout and design are mixed within the WML markup
and not separated. The only image format supported is wmbp, which is very
lightweight at the expense of image quality. It can only be used for icons
and small images like company logos [24].

WMLScript WMLScript is derived from ECMAScript [1, Chapter 24]
(=JavaScript) and is used in particular for content-checking of user entered
forms as well as datatype conversions and small calculations.

Wireless Telephony Application Interface (WTAI) Through special
links pre�xed with wtai:// WAP provides a minimalistic interface to the
telephone over WML.

This way, hyperlinks can be used to directly call phone numbers, e.g.:

1 Call me

add entries to the phones addressbook, e.g.:

1 <go href=wtai://wp/ap;0123456789,Me/>Add me</go>

or send tone sequences, e.g.:

1 <go href=wtai://wp/sd;0123456789*\#ABCD/>

Microbrowser Speci�cation A WAP 1.x WML-browser is supposed to
support the above introduced components of the WAE. Di�erent browsers
from di�erent manufacturers may deviate from the speci�cation by the WAP
Forum, which is expressed as the microbrowser speci�cation. As a conse-
quence, not all the speci�ed functionalities have to be available on all devices.
The many minor releases of the WAP 1.x speci�cation with di�erent sup-
ported functionalities furthermore created a fragmentation of the application
environment.

Programming Model

Just like the Protocol Stack and the Application Environment, also the WAP
Programming Model is closely aligned with the standard Web Programming
paradigms. As �gure 4.2 [80] shows, WAP basically uses a pull-model with
request-response roundtrips from the client to the server. Just like any arbi-
trary web-browser, the WAP client �rst hast to make a request to the server
(pulling), before receiving the requested content. The big di�erence is that
there is a proxy or gateway [1, Chapter 24] between the server and the client.
This WAP gateway is responsible for en-/decoding the WML-contents from

CHAPTER 4. MOBILE WEB APPLICATIONS 60

and to the client. The mobile client only sends and receives binary WML
and WMLScript, which is smaller than uncompiled sources and thus reduces
the communication payload. The gateway is responsible for decoding the
data before sending it to the webserver and for encoding the data received
from the webserver in order to be viewable by the client.

Figure 4.2: WAP 1.0 programming model

Another major responsibility of the WAP gateway is to handle the pro-
tocol interworking between the client and the web (application) server. The
mobile client talks to the WAP gateway over the protocols de�ned in the
WAP Protocol Stack, as shown in �gure 4.3 [80]. The gateway is then in
charge of translating the WAP Protocols to their respective land-line In-
ternet pendants, to communicate with the webserver. Responses from the
webserver are conversely transformed into the WAP Protocols before being
submitted to the mobile client.

The WAP gateway is provided by the mobile network operator5, so for
WAP application development and deployment, a normal webserver hous-
ing the WML and WMLScript �les is enough. From the perspective of
the mobile client, the whole process of communication over the proxy is
transparent. To request a speci�c resource a normal URI over HTTP (e.g.
http://server/resource.wml) is issued, with the only di�erence being the
.wml �le-extension instead of the usual .html.

4.2.2 WAP 2.x

WAP 2.x, introduced in 2002 [80], greatly re�ects the enhancements of mo-
bile communications since the release of WAP 1.0 in 1998. Major design
goals have been the convergence with standard web technologies to allow

5There are also commercial and an Open Source WAP gateways available, which can
be integrated into an enterprise environment. A example for an Open Source gatway is
Kanel (http://www.kannel.org/, last viewed 2008-02-15

CHAPTER 4. MOBILE WEB APPLICATIONS 61

Figure 4.3: WAP 1.0 gateway

the development for one web [46], as well as to remain backward compatibil-
ity with the existing 1.x WAP speci�cations. Also, several new features have
been introduced, like the possibility of sending push-content to the client.

Protocol Stack

The WAP Protocol Stack has been considerably changed in WAP 2.x. Like
�gure 4.4 [80] shows, the legacy WAP 1.x protocols have all been abandoned
in favour for new ones that are fully interoperable with existing Internet
protcols [80]:

A key feature of WAP 2.0 is the introduction of Internet protocols
into the WAP environment. This support has been motivated by
the emergence of high-speed wireless networks (e.g. 2.5G and 3G)
that provide IP support directly to the wireless devices.

Figure 4.4: WAP 2.0 protocol stack

CHAPTER 4. MOBILE WEB APPLICATIONS 62

Application Environment (WAE)

As mentioned above, one of the key goals of the WAP 2.0 speci�cation was
to converge mobile and traditional web application development. As a con-
sequence the Wireless Markup Language (WML) used in version 1.x of WAP
was abandoned in favour of an XHTML variant that could also be displayed
in a normal desktop browser. Additionally separation of layout and style
closely aligned to the W3C Cascading Style Sheets (CSS) was introduced.
WMLScript completely vanished, which means that by speci�cation there is
no client side scripting possibility in WAP 2.x [46]6.

XHTML Mobile Pro�le (MP) The XHTML MP document type is
de�ned as a strict superset of XHTML Basic [79]. XHTML Basic is speci�ed
by the W3C7 and only includes a minimal set of tags (modules). XHTML
MP extends XHTML Basic with modules, elements and attributes to provide
an authoring language targeted for resource-constrained mobile web clients.

Because of the close connection between XHTML MP and XHTML (Ba-
sic), XHTML MP pages can be displayed in normal desktop web browsers,
which greatly eases development of mobile web pages. A complete list of
supported tags is provided in the XHTML MP speci�cation [79].

XHTML MP browsers support the common web image formats GIF,
JPG and PNG. Together with XHTML MP, style sheets, which allow for the
separation of layout and design, were introduced to WAE user agents.

WAP CSS If a WAE user agent supports styling of documents with style
sheets, it must support the syling language WAP CSS [79]. WAP CSS is
a subset of CSS2 speci�ed by the W3C8. As a subset of CSS2, WAP CSS
adheres very closely to the W3C CSS in the core functionalities like basic
syntax, inheritance, cascading, selectors, box model, etc.

It also supports the following WAP speci�c extensions [78]:

� Marquee
Properties to create simple animation e�ects for scrolling text.

� Input
Properties to specify an input-mask for the format of the allowed user
input of XHTML MP form elements.

� Accesskey
A property similar ot the HTML accesskey-attribute that allows for
specifying characters for alternative quick navigation.

6http://www.developershome.com/wap/xhtmlmp/xhtml_mp_tutorial.asp?page=
wmlFeaturesLost#4.5.XHTML0MP\%20Does\%20Not\%20Support\%20Client-side\
%20Scripting|outline, last viewed 2008-02-15

7http://www.w3.org/TR/xhtml-basic/, last viewed 2008-02-15
8http://www.w3.org/TR/REC-CSS2/, last viewed 2008-02-16

CHAPTER 4. MOBILE WEB APPLICATIONS 63

WAP CSS speci�c attributes and attribute-values are always pre�xed
with -wap- (e.g. a {-wap-accesskey: send, *, #;} for de�ning the send,
* and # button as quick navigation for hyperlinks).

Programming Model

Alongside the employment of standard Internet protocols in the protocol
stack, the WAP 2x.programming model has also changed. As �gure 4.5 [80]
shows, the mobile WAP client device can now directly communicate with
the origin webserver. Also the step of en-/decoding the application data
drops out, since the XHTML MP and WAP CSS sources are not binary
encoded but sent in plain text, like conventional HTML used for desktop
web applications.

Still a WAP gateway can be used to o�er mobile service enhancements,
or for optimizing the communications process. In addition, a WAP proxy is
mandatory to o�er the newly introduced push functionality [80].

Figure 4.5: WAP 2.0 programming model

4.3 Mobile Asynchronous JavaScript And XML (AJAX)

Modern AJAX based web applications mark the eventual technological con-
vergence of mobile and desktop web development. Together with the evo-
lution of handsets, mobile web browsers mature, o�ering nearly the same
set of technologies to the web developer as their desktop counterparts. This
eliminates the need for customized technologies like WAP and allows for the
development of one web.

4.3.1 The AJAX technologies

There is no technical di�erence between mobile AJAX and AJAX on desktop
computers, so in order to understand mobile AJAX it is important to know

CHAPTER 4. MOBILE WEB APPLICATIONS 64

what AJAX generally is about.
Rather than being one technology in its own right, like e.g. Java ME or

the .Net Compact Framework, AJAX is more a collection of well established
client side web technologies, corporately employed in a new way. The term
AJAX is shorthand for Asynchronous Javascript And XML and was coined
by Jesse James Garnet in his online article �Ajax: A New Approach to Web
Applications� [34] in February 2005 [35,86].

AJAX comprises the following basic technologies [34, 35,86]:

� Standards based presentation: (X)HTML & CSS

� Programming and visual object manipulation: JavaScript &
the Document Object Model (DOM)

� Data Exchange formats: Plain text, XML, JSON

� Asynchronous data retrieval over HTTP: XMLHttpRequest (XHR)
object

All these technologies have been around for years in web development
and are commonly found in any modern browser. One of the most inter-
esting technology in the context of AJAX is the XMLHttpRequest (XHR)
object. It was �rst introduced by Microsoft in Internet Explorer 5 for Win-
dows as an ActiveX object [3, 86]. XHR liberates web developers from the
traditional static page-oriented web application model and enables them to
send synchronous and asynchronous HTTP requests with full control over
the request and response. While with the traditional web application model
the server could only deliver full HTML pages as a response to the web client,
AJAX represents a more modular approach. An AJAX client just fetches
the information really needed, which avoids the reloading of the client page
with every request. Also, the exchanged data format does not need to be
HTML, but could rather be any appropriate format.

Figure 4.6 opposes the traditional web application model to the AJAX
web application model [86].

It is important to note that for the server there is no di�erence between
an AJAX request and a traditional roundtrip. From a server's perspective it
is always normal HTTP communication. The di�erence is the data format
of the response carried over HTTP that could be plain text, XML, or JSON9

in addition to (X)HTML. The browser takes care of all the steps necessary
to provide XHR functions to the content developer � from the initiation of
the asynchronous request to the provision of the received data and the call
of the callback function de�ned by the client developer (see �gure 4.7 [33]).

9JSON (JavaScript Object Notation) is a lightweight data-interchange format for ex-
changing JavaScript objects as text strings. It can be seen as JavaScript object serializa-
tion. http://json.org/, last viewed 2008-02-14

CHAPTER 4. MOBILE WEB APPLICATIONS 65

Figure 4.6: Traditional versus AJAX web application model

Due to the asynchrony of XHR calls, control is returned to the client as
soon as the request is dispatched. Only when the server has �nished the
processing of the request, the browser loads the received data into the XHR
object and informs the client application by calling the speci�ed JavaScript
callback function. This roundtrip behaviour makes AJAX applications ex-
tremly responsive compared to traditional web applications.

Overview of the XMLHttpRequest object

The most important members of the XMLHttpRequest object are [36,85]10:

� open(http-method, url, async, user, password)
Assembles a new request that will later be sent to the server. The user
and password parameters are optional and only necessary, when the url
is protected. If async is true, the request will be sent asynchronously.

� onreadystatechange
De�nes the callback function that will be called, when the asynchronous
request has been responded by the server.

� send(data)
Sends the request with the given data to the server. If the data-
parameter is null or omitted, no entity-body (HTTP message body) is
transferred to the server. In this case, variables can be sent encoded
as query-strings in the url of the open()-method.

10The provided list is only a subset of all available methods and �elds. A com-
plete summary of the XMLHttpRequest object can be found at http://www.w3.org/TR/
XMLHttpRequest/, last viewed 2008-02-26

CHAPTER 4. MOBILE WEB APPLICATIONS 66

Figure 4.7: The AJAX roundtrip

� responseText
Contains the response the server sends back as a text-string.

� responseXML
If the response returned by the server is XML, this �eld contains the
response value as XML Document Object Model (DOM) tree.

� readyState
Always contains one of the valid ready states of the AJAX call [36,85]:

� 0 : UNSENT
Uninialized request, before open() is called.

� 1 : OPENED
Request has ben assembled (open()), but not sent (send()).

� 2 : HEADERS RECEIVED
Request was sent and is being processed and content headers are
available.

CHAPTER 4. MOBILE WEB APPLICATIONS 67

� 3 : LOADING
Request is being processed and some partial data already is avail-
able.

� 4 : DONE
The reponse has been completey processed by the server and the
data is available to the client.

Before processing the response data, one should always check the ready
state of 4 in the callback function.

� status
Returns the HTTP-status code. Before processing the data, at least
status code 200 (OK)11 should be checked to see if the request was
successfully answered by the server.

4.3.2 AJAX for Mobile Devices

As previously mentioned, mobile AJAX means nothing more than the appli-
cation of the AJAX design pattern on mobile devices and is technologically
the same as AJAX on the desktop. Modern mobile browsers use almost the
same browser-engines with the same full range of available technologies as
their desktop counterparts. The di�erence rather lies in the constraints and
limitations of mobile device hardware and wireless networks, as well as the
di�erent handling of a mobile device compared to a a desktop computer.

Some of the unique requirements and characteristics of mobile web appli-
cations are [4, 21, 61,73,84]:

� Small Screen Size
The screen size of mobile devices is much smaller (somewhere between
120 and 380 pixels) than that of desktop computers. This means that
content should be presented linearly without the use of frames, format-
ting tables or complex pull-down menus.

� Resource and Execution Limits
Mobile devices have very limited memory capacities, which means that
caching and displaying big �les is not possible. E.g. the iPhone im-
poses a 10 MB limit on every single downloaded �le (HTML page,
JavaScript �le, CSS �le, images, . . .). According to Yahoo's UI Re-
search Group [73], the actual size that the iPhone can handle is much
smaller and depends on memory fragmentation and other applications
that are running concurrently in the browser. Even more limited is
the cache of the iPhone: The Yahoo Research Group found out that

11A complete list of HTTP status codes can be found at: http://www.w3.org/Protocols/
rfc2616/rfc2616-sec6.html, last viewed 2008-02-26

CHAPTER 4. MOBILE WEB APPLICATIONS 68

only individual components of less than 25 KB can be cached by the
device. The maximum limit of cachable components was determined
at 19, resulting in an overall browser-cache of 475 KB to 500 KB.

Another big constraint of mobile devices is the limited processing
power. This means that especially calculationally intensive client side
scripts will not succeed. Many mobile devices have upper limits for
script execution to guarantee the responsiveness of the UI and prevent
the battery from draining due to heavy CPU utilization. Again for
the iPhone for example, the maximum time for JavaScript execution
is limited to 5 seconds for each top-level entry point [4].

� Limited Key Input and User Interaction
Mobile devices follow di�erent paradigms of user interaction than desk-
top computers. Mobile web applications have to be designed to work
under that circumstances. Handsets may e.g. have no full QWERTY-
keyboard, making key input tedious. Many new mobile devices are
using touch-screens as their major input device. This means that web-
pages have to be designed in such a way that buttons, links, menus,
etc. can easily be captured with the �nger. As a consequence this im-
poses some minimum size on these elements, since pointing with �ngers
is much less accurate than the traditional mouse available on desktop
systems.

� Limited Network Connection
Network transfer speed of mobile devices over GPRS, EDGE, or even
HSDPA is much lower than high bandwidth land-based Internet. So its
basically a good idea to compress HTTP-responses. The most e�ective
and most widely deployed method is gzip � Approximately 90 % of to-
day's Internet tra�c is served by gzip-enabled browsers [61]. Also many
mobile browsers like Safari for the iPhone, or Opera Mobile and Mini
support gzip. Gzipping can reduce the response size by up to 70 %.
The best results are achieved if all textual responses like (X)HTML,
JavaScript, CSS, XML or JSON are compressed. Binary �les like PDF,
or images should not be gzipped since they are already compressed in
their own format by default.

Also mobile web sites are required to be kept especially �tidy�. It is
wise to reduce the content transferred over the network to an absolute
minimum. This can be achieved by using lean HTML-markup (e.g.
<div> instead of <table>) and removing all unneeded payload like
HTML-comments or orphaned CSS-classes and JavaScript functions.

CHAPTER 4. MOBILE WEB APPLICATIONS 69

AJAX enabled Mobile Browsers

Like for many other mobile application development technologies, device
and platform heterogeneity and the resulting fragmentation is one of the
biggest concerns for mobile AJAX applications. Mere JavaScript support is
not enough for a browser to be AJAX enabled. All of the core technologies
making up AJAX (see section 4.3.1) need to be implemented.

The following is a list of the currently most popular mobile AJAX aware
browsers. This is by no means a complete list of all AJAX enabled brow-
ers. Like the mobile device market, the mobile browser market is much less
consolidated than that of desktop browsers. Also, the key players in desktop
browsing do not �nd a one to one representation in market share of mobile
browsers.

� WebKit based browsers
The Open Source web browser engine WebKit is increasingly becoming
popular for mobile devices. It particularly gained fame as the basis for
the Safari browser of the iPhone. The project's website can be found
at http://webkit.org/.

Important mobile browsers based on WebKit are:

� Safari for iPhone & iPod touch
(https://developer.apple.com/iphone/devcenter/)

� Nokia S60 web browser
(http://opensource.nokia.com/projects/S60browser/)

� OHA Android browser
(http://code.google.com/android/what-is-android.html)

� Internet Explorer Mobile
(http://www.microsoft.com/windowsmobile/software/iemobile.mspx)

Like on the desktop, every Windows Mobile device comes with Internet
Explorer (IE) pre-installed. Internet Explorer Mobile is a scaled down
version of Internet Explorer tailored speci�cally for wireless mobile
devices.

A good overview of the AJAX capabilities of Internet Explorer Mobile
is provided by Kevin Grey, member of the IE Mobile Team, in the
IEMobile Team Weblog entry �AJAX on IE Mobile� [19].

� Opera
The Norwegian company Opera currently o�ers two browsers for mo-
bile devices:

CHAPTER 4. MOBILE WEB APPLICATIONS 70

� Opera Mobile
(http://www.opera.com/products/mobile/)

Opera Mobile is a full �edged mobile browser with large stan-
dards support. It is available for Symbian UIQ and S60, as well
as Windows Mobile. In contrast to its desktop brother, Opera
Mobile is not free of charge. At the time of writing of the thesis,
the unit price was EUR 19,00.

� Opera Mini
(http://www.operamini.com/)

As opposed to its near relative Opera Mobile, Opera Mini can not
be considered a full AJAX enabled mobile browser. Opera Mini
is a proxy based browser that loads every request over a remote
server which converts each page into the light-weight Opera Bi-
nary Markup Language (OBML) before sending it to the client
[38]. The Opera Mini servers are based on the Opera 9.5 engine
which does all the processing of the page. The Opera Mini client
does no JavaScript processing at all and works more or less as an
interface window for an Opera running in the server. JavaScript
events are restricted to the most basic ones that are triggered by a
user click (onChange, onClick, links, form-submits, etc.) and en-
force a changed version of the page being rendered by the server.
Although the XMLHttpRequest object is supported, many AJAX
applications won't work as expected on Opera Mini [38]:

Given handset limitations and Opera Mini's client-server
architecture, �Ajax� applications cannot be expected to
work as expected on Opera Mini.

Opera Mini can be downloaded free of charge and since it is writ-
ten in Java ME, it is available for a broad number of mobile
devices.

� Mozilla Minimo
(http://www.mozilla.org/projects/minimo/)

Minimo is the mobile device browser from Mozilla Foundation. It can
be downloaded free of charge, but is only available for Windows Mobile
based devices. In October 2007, Mozilla's vice president of engineering
Mike Schroepfer, announced that Mozilla Foundation will release a full-
featured mobile version of their populator desktop-browser �Firefox�,
based on the new Gecko engine version 1.9, in 2008 [58]. The Minimo
project thus is very likely to be discontinued.

� ACCESS NetFront
(http://www.access-company.com/products/netfrontmobile/browser/index.html)

The ACESS NetFront browser in its current version 3.5 is a full-
featured mobile device browser with rich standards support. It is

CHAPTER 4. MOBILE WEB APPLICATIONS 71

available on a broad number of mobile operating systems, including
amongst others Palm Garnet/OS, Windows Mobile, Symbian and var-
ious embedded Linux distributions. The ACCESS NetFront browser is
pre-integrated by handset manufacturers into their devices and is not
available as download to end-users.

� Openwave
(http://www.openwave.com/us/products/client_products/mobile_browser/)

Openwave browsers have been integrated in many mobile phones as
the on-board browser. There are currently three di�erent versions of
Openwave browsers, of which two of them (Openwave Surfer Browser
and Openwave Mercury Browser) fully support AJAX. Like the AC-
CESS NetFront browser, the Openwave browser is not available as an
installable application for the handset user.

4.3.3 Bene�ts and Limitations

Web based mobile applications o�er many advantages over their native or
Java ME counterparts. But they also su�er from the same limitations as a
desktop browser application, which is most notably the inability of accessing
the device capabilities or the platform APIs. This inability weighs particu-
larly heavy on mobile devices as it greatly reduces the information about the
ever-changing device context and thus reduces the potential for applications
that intelligently adapt to the mobile user on the move. Consequently one
of the major �ndings of the Workshop on mobile AJAX12, jointly held on 28
September 2007 by the W3C and the OpenAjax Alliance13, was that mobile
AJAX applications need scripting APIs that o�er access to device services
such as GPS, PIM, messaging, camera, etc.

The following is a short summary of some of the bene�ts and limitations
of mobile AJAX applications:

+ Security
As a web application, mobile AJAX applications are inherently secure.
All scripting code is executed in the browsers sandbox, which only ex-
poses a safe set of APIs to the developer. Additionaly, the XHR object
can only make requests to the same domain on which it is running [36],
which is referred to as same origin policy. For most browsers the same
origin policy is very restrictive. E.g. for Mozilla based browsers it
means that the protocol, the port and the host need to be identical14.

12http://www.w3.org/2007/06/mobile-ajax/report.html, last viewed 2008-03-06
13http://www.openajax.org, last viewed 2008-03-06
14http://www.mozilla.org/projects/security/components/same-origin.html, last viewed

2008-03-06

CHAPTER 4. MOBILE WEB APPLICATIONS 72

+ Deployment
The deployment is one of the biggest advantages of any web applica-
tion, which is as easy as changing the �les on the server and pressing
the browser's reload-button.

+ Rapid Application Development (RAD)
Web applications are generally faster and easier to develop than native
applications. With the convergence of mobile web standards into one
web, web application developers can greatly bene�t from their already
acquired skills without the need to learn a new technology. Also many
existing web applications only have to be modi�ed to �t mobile devices,
which avoids creating a new application from scratch and may serve
as a quick entry to mobile computing.

± Cross platform
Web applications are operating system agnostic in the sense that they
are only relying on the browser as their development platform. In
theory, this allows mobile AJAX applications to be available on a
large number of heterogeneous devices, ranging from low-priced fea-
ture phones to highend integrated smartphones. As mentioned above
(see section 4.3.2) in reality the mobile browser landscape is very frag-
mented, with only a small number of browsers o�ering AJAX support.
Also the degree of AJAX standards support may vary between di�erent
mobile browsers.

− Access to device capabilities
The nonexistent access to the device capabilities is probably the biggest
handicap of mobile AJAX compared to other applications. The per-
ceived knowledge about a website's environment is usually referred to
as delivery context15. The term describes a mobile website's ability to
access device capabilities like PIM, the local �lesystem, position data,
etc., as well as information about the network connection or the user
preferences. Many e�orts are being made at the moment for o�ering a
richer delivery context to mobile AJAX applications [42]:

� Browser extensions
Next generation mobile browsers could o�er direct DOM access
to the most important device capabilities, like PIM or position
data. Ideally they would be standardized like the members and
methods of the XMLHttpRequest object.

� Linking of Java and JavaScript
The fact that Java ME is already available on a large number of
today's mobile devices and that it o�ers various levels of device

15http://www.w3.org/TR/di-gloss/#def-delivery-context-v2, last viewed 2008-04-03

CHAPTER 4. MOBILE WEB APPLICATIONS 73

capabilities like File & PIM (JSR 75) or Location (JSR 179) makes
it an ideal candidate for connecting to through a mobile AJAX
webclient. Java-to-Javascript communication16 is not new and
has been around for a long time to allow Java-Applets embedded
in a website to communicate with their environment. Similar
techniques could be incorporated in mobile browsers to establish
a communication interface between JavaScript and the Java ME
APIs available on the device.

� Native platform extensions
Native platform manufacturers could o�er proprietary interfaces
for accessing parts of their device capabilities within mobile AJAX
applications.

Amongst others, the following concrete implementations of mobile browser
access to device capabilities have been available at the time of writing
of this thesis:

� Apple iPhone application links [8, Chapter 6]
The iPhone application links are similar to the Wireless Telephony
Application Interface (WTAI) of WAP introduced in section 4.2.1
in that both allow access to the device via special hyperlinks.
The most important di�erence is that by contrast to WTAI, the
iPhone application links can only be used to open an application
associated with a particular type of hyperlink. They can not be
used to save any data on the device. The supported special links
are:

mail links, which open the iPhone mail application, e.g.:

1 John Frank

phone links, which launch the phone application and dial the given
number, e.g.:

1 1-408-555-5555

map links, which open a Google map containing the given desti-
nation, e.g.:

1 Cupertino</

a>

and YouTube links, which open the YouTube application and play
the given video, e.g.:

1

Some Video

16http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/java_js.html, last
viewed 2008-04-03

CHAPTER 4. MOBILE WEB APPLICATIONS 74

� Vodafone MobileScript [47]
Vodafone MobileScript is an ECMA Script (JavaScript) extension
that allows developers to access device APIs and data from within
their mobile web applications. It is currently available as down-
load for Windows Mobile 2003 and Windows Mobile 5.0. Accord-
ing to the project website17, implementations for other platforms
such as Symbian or Linux are also planned. Figure 4.8 [47] shows
a shematic overview of how MobileScript �ts into the architecture
of a mobile operating system.

Figure 4.8: Vodafone MobileScript within a mobile operating system
stack

The following code snippet shows a simple MobileScript JavaScript
function that puts down any incoming call and sends the caller a
SMS that the callee is busy:

1 function handler() {

2 Phone.IncomingCallRegistry.IncomingCall.PutDownIncoming();

3 Phone.Outbox.SendSMS(Phone.IncomingCallRegistry.

IncomingCall.SourceAddress, "sorry, busy, I will call

you later");

4 }

5

6 Phone.OnIncomingCall(handler);

� Opera Platform / Opera Widgets
The Opera Platform describes a set of JavaScript DOM APIs
that allow operators to integrate online content with local device
applications [9, 43]. The provided APIs include access to device
status �ags, messaging, operating system applications and related

17http://www.vodafonebetavine.net/web/MobileScripting, last viewed 2008-05-30

CHAPTER 4. MOBILE WEB APPLICATIONS 75

features. According to [42], the Opera Platform has been super-
seded by Opera Widgets18. By contrast to the Opera Platform,
Opera Widgets are not created by mobile operators but can be
made by any developer. They do not support the Opera Platform
JavaScript device API interface. A JavaScript File I/O API19 has
been recently announced for Opera Widgets, which allows web ap-
plications to interact with the device's �le system. Possible �le
operations include opening, writing, creating, moving and delet-
ing of �les and directories.

− Network dependency
Browser applications are inherently network dependent and may not
even be loaded without access to the network. Also, their possibility
to store data locally is very restricted, which makes them impractical
for o�ine use.

18http://widgets.opera.com/, last viewed 2008-05-30
19http://dev.w3.org/2006/webapi/�leio/�leIO.htm, last viewed 2008-05-30

Chapter 5

Service Oriented Architecture

5.1 Overview

The previous two chapters Native Development Platforms and Mobile Web
Applications showed that one of the biggest problems of mobile application
development is the huge fragmentation of operating systems and platforms.
There exists no technology that allows for easy cross-platform mobile appli-
cation development. In such a highly fragmented and frequently changing
environment, the only way to address multiple client devices may be to pro-
gram multiple client applications. In a distributed application scenario, in
which the client-code heavily relies on interaction with a server-system, it is
desired that the server exposes only one interface to the various clients. Each
client can access this interface in a well de�ned and uniform way, without
being aware of the actual implementation of the logic on the server. Also
the server is not aware of the clients using its service. It is just a provider
of an autonomous interface. This leads to a clear separation of client logic
from the server. Such a scenario can be realized with a Service Oriented
Architecture (SOA).

5.2 Basic Concepts

The evolution of software packaging spans from functions and methods over
packages, objects and classes to components and �nally services [81].

A service in a programming-context is very much like a component. They
are both independent building blocks that collectively represent an applica-
tion environment [17]. But services have several characteristics that set them
apart from components. The most important one being autonomy [17]. Au-
tonomy means that a service can completely function on its own without
being integrated into a larger system. Also services are completely indepen-
dent from other services. By providing well-de�ned interfaces, services can
be coupled together into greater logical units. This is commonly referred to

76

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 77

as loosely coupling/bounding because the services do not have to be aware
of each others functionality. This allows for the distribution of services over
system, platform and network borders. The services rely on the interfaces
for interacting with each other. Two major aspects within this approach are
the uniformely accessible interfaces and a standardized way of exchanging
information over them.

Another aspect of a service is that it breaks with the traditional client-
server pardigm, in which one side is the selected server and the other side
the selected client. As a self-contained component, a service can function as
a server as well as a client. This means that a service A could act in one situ-
ation as a server to service B requesting something and in another situation
B could act as a server for A, which itself demands a certain functionality.

In a SOA-architecture, service providers usually register their services in
a public registry. Service consumers can query this repository to �nd ser-
vices matching their speci�c criteria. If the registry can o�er such a service,
it provides the consumer with an endpoint-address where the service can be
found as well as a contract describing the service. Figure 5.1 illustrates this
�nd-bind-execute cycle [30].

Figure 5.1: SOA �nd-bind-execute cycle

5.3 Web Services

A Service Oriented Architecture can be achieved in many di�erent ways,
but Web Services are de�nitely the most popular one. In fact they are so
common that the two terms are often used interchangeably.

Web Services are a realization of the SOA paradigm with existing In-
ternet and WWW technologies, foremost the Hypertext Transfer Protocol
(HTTP) and the eXtensible Markup Language (XML) [18]. HTTP is used
as the transport mechanism for XML based service message exchanges. Web

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 78

Services are not exclusively bound to HTTP yet its widespread deployment
in existing Internet environments makes it the primary transport protocol
for today's Web Services.

Two important architectural concepts form the Web Services application
stack. The more formal SOAP approach that builds on a large set of stan-
dards de�ned by the W3C, OASIS1 and other standard bodies. And the less
speci�ed REST approach.

5.3.1 SOAP based Web Services

The three core technologies of SOAP based Web Services are Simple Object
Access Protocol (SOAP), Web Service Description Language (WSDL) and
Universal Description, Discovery and Integration (UDDI). Together they are
used as a direct application of the SOA �nd-bind-execute cycle (see �gure
5.1). The Service Provider must describe its SOAP based Web Service with
WSDL (low level) and UDDI (high level for lookup). A Service Consumer
can look for a speci�c service in an UDDI-Registry. If the Service Consumer
�nds an appropriate service, it can bind to it with the information provided
by the registry and invoke it via its WSDL service description. The actual
data exchange between the service endpoints is carried out with SOAP.

SOAP2 and WSDL3 are standardized by the W3C, whereas UDDI4 is a
standard maintaned by OASIS.

SOAP

SOAP (originally an acronym for Simple Object Access Procotol, now it is
just a name [40]) is the key technology for SOAP based Web Services and
responsible for exchanging data between to service endpoints. Like its com-
panion technologies WSDL and UDDI it is built on top of XML and provides
a schema in the form of the SOAP-speci�cation that allows for system inde-
pendent data exchange.

It has been standardized in two di�erent versions, SOAP 1.15 and SOAP
1.26.

A SOAP document is referred to as a SOAP message or SOAP envelope
[40]. Each SOAP envelope consits of a header and a body. The header
carries meta-information, quality of service constraints and routing directives
relevant for the service exchange. The body contains the payload in form

1Organization for the Advancement of Structured Information Standards (http://www.
oasis-open.org), last viewed 2008-03-11

2http://www.w3.org/TR/soap/, last viewed 2008-03-20
3http://www.w3.org/TR/wsdland, last viewed 2008-03-20
4http://uddi.org/pubs, last viewed 2008-03-20
5http://www.w3.org/TR/2000/NOTE-SOAP-20000508/, last viewed 2008-03-20
6http://www.w3.org/TR/soap12-part1/, last viewed 2008-03-20

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 79

of a (partial) XML document. Binary data can be included encoded in the
message body.

SOAP can be used for Remote Procedure Calls (RPC) as well as literal
document exchange. For RPC, the body contains XML serialized method
calls, which are answered by the remote station with a SOAP message con-
taining the return values. This way Web Services can be used as an alter-
native to programming language speci�c RPC methods like amongst others
Java RMI, CORBA or Microsoft DCOM.

Today much more common than RPC is literal document exchange. With
literal document exchange, XML serialized documents are transferred in the
SOAP body. This could be e.g. a booking request containing all the relevant
booking data generated by the calling Web Service, which gets answered by
the called service with a con�rmation or an error message.

An important concept of the SOAP messaging framework is the SOAP
processing model. Every SOAP message originates at an initial SOAP sender
and reaches a speci�c ultimate receiver via zero or more SOAP intermedi-
aries7. The way a SOAP message travels in a network is described as its
message path [81]. The message path information is included in the SOAP
header.

Web Services Description Language (WSDL)

Together with SOAP, WSDL forms the heart of every SOAP based service
architecture. It is used for describing Web Services with XML based meta-
data information in such a way that other services can automatically use
them. This way it is a key enabler for a Service Oriented Architecture, as
it allows for programmatically exploring and using a service. The currently
most widely deployed version is WSDL 1.18

Each WSDL document consists of a set of de�nitions (<definitions>-
root-tag) that describe the what, the how and the where of a speci�c service.
Listing 5.1, taken from the Mindbreeze Enterprise Search SDK [39], shows an
exemplary excerpt of a WSDL-document describing a query-interface (full
description of XML Schema messages has been omitted). In detail, a WSDL
document comprises the following information [40,81]:

� Accurate description of the exchanged messages (what)
In order for the service consumer to know how to invoke the service and
what the corresponding response looks like, the messages exchanged by
a service have to be precisely described by the service provider. Usually
XML Schema is used for that XML data description. Since WSDL
imposes no restriction on the data declaration language, other schema
languages like RelaxNG or Document Type De�nitions (DTDs) may

7http://www.w3.org/TR/soap12-part1/, last viewed 2008-03-20
8http://www.w3.org/TR/wsdl, last viewed 2008-03-20

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 80

also be used. The schema information of the exchanged messages is
located in the <types>-tag. The description of the message is in the
<message>-tag. The <portType>-tag groups a related set of messages
into one operation. It also de�nes the kind of the operation which can
be either

� One-way
The service only receives a message and doesn't respond.

� Request-response
The service receives a request message and produces a correspod-
ing response.

� Solicit-response
The inverse of request-response: The service �rstly sends a mes-
sage and than receives a response.

� Noti�cation
The service sends a message without a response.

The kind of operation is constructed by arranging the messages that
make up the operation with successive <input>- and <output>-tags.(E.g.
only an <input>-tag for a one-way operation, an <input>-tag followed
by an <output>-tag for request-response, etc.)

� How to format the messages (how)
The information about how the exchanged messages should be bound
to a particular messaging protocol is de�ned in the <binding>-tag.
The most important messaging protocol is SOAP, which o�ers the
binding types RPC/encoded, RPC/literal, document/encoded and doc-
ument/literal. The choice of the binding in�uences how the transferred
messages ultimately look like.

� Where to �nd the service (where)
The <service>-tag �ties together� the information speci�ed through
the other tags in the WSDL document into a cohesive interface and
gives the service a name. Furthermore it indicates where the service
can be found on the network by providing a public location Uniform
Resource Locator (URL).

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 81

1 <?xml version="1.0" encoding="utf-8"?>

2 <wsdl:definitions xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

3 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"

4 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

5 xmlns:mes="urn:mindbreeze:enterprisesearch:interfaces"

6 targetNamespace="urn:mindbreeze:enterprisesearch:interfaces">

7 <wsdl:types>

8 <xsd:schema targetNamespace="

urn:mindbreeze:enterprisesearch:interfaces" elementFormDefault="

qualified">

9 <xsd:element name="SearchRequest">...</xsd:element>

10 ...

11 <xsd:element name="SearchResponse" type="mes:SearchResponse"/>

12 ...

13 </xsd:schema>

14 </wsdl:types>

15 <wsdl:message name="SearchRequest">

16 <wsdl:part name="parameters" element="mes:SearchRequest"/>

17 </wsdl:message>

18 <wsdl:message name="SearchResponse">

19 <wsdl:part name="parameters" element="mes:SearchResponse"/>

20 </wsdl:message>

21 <wsdl:portType name="QueryServicePort">

22 <wsdl:operation name="Search">

23 <wsdl:documentation xml:lang="en">

24 Submits a new query.

25 </wsdl:documentation>

26 <wsdl:input message="mes:SearchRequest"/>

27 <wsdl:output message="mes:SearchResponse"/>

28 </wsdl:operation>

29 </wsdl:portType>

30 <wsdl:binding name="QueryServiceBinding" type="mes:QueryServicePort">

31 <soap12:binding transport="http://schemas.xmlsoap.org/soap/http"/>

32 <wsdl:operation name="Search">

33 <soap12:operation style="document"/>

34 <wsdl:input>

35 <soap12:body use="literal"/>

36 </wsdl:input>

37 <wsdl:output>

38 <soap12:body use="literal"/>

39 </wsdl:output>

40 </wsdl:operation>

41 </wsdl:binding>

42 <wsdl:service name="QueryService">

43 <wsdl:port name="QueryServicePort" binding="mes:QueryServiceBinding"

>

44 <soap12:address location="https://localhost:23300/soap"/>

45 </wsdl:port>

46 </wsdl:service>

47

48 </wsdl:definitions>

Listing 5.1: Excerpt of Mindbreeze Query Service WSDL

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 82

Universal Description, Discovery and Integration (UDDI)

The UDDI speci�cation provides a description of Web Services and allows
them to be listed in an UDDI-registry. Much like in a classi�ed directory,
service consumers can look up Web Services in an UDDI-registry and get
all the relevant information for connecting to them. An UDDI-registry can
be run by a company for providing services to their customers, as well as
for internal usage. Microsoft, IBM and SAP used to maintain the Universal
Business Registry, which served as a broker place for Web Services all over
the world, but was discontinued in 20069.

Since WSDL serves as the �technical instruction manual� for a SOAP
based Web Service, UDDI needs to tightly integrate with it. This is done
via mappings in the UDDI-document that directly map WSDL entities to
UDDI entities [81]. Additionally to the technical mapping of the service, the
UDDI document provides meta-information that describes the service and
allows for criteria based discovery.

2nd generation technologies

Since their introduction in the year 2000 [81, Chp. 4.1], SOAP based Web
Services have been widely adopted and gained big momentum especially in
the realm of enterprise applications. To compensate for shortcomings of
the early speci�cations and to address newly evolved needs, numerous new
protocols have been added to the core technologies. Amongst others they
cover issues such as [81]:

� Transactions
WS-Transaction, WS-AtomicTransaction, . . .

� Security
WS-Security, WS-Trust, WS-Privacy, WS-Authorization, . . .

� Quality of Service
WS-Reliable Messaging, WS-Policy, . . .

� Service Composition
WS-BPEL, . . .

The new technologies are not a replacement of the well established spec-
i�cations SOAP, WSDL and UDDI, which still remain the pillars of SOAP
based Web Services. The speci�cations are often developed jointly by a
small group of key vendors like Microsoft or IBM and may later get adopted
by standards bodies such as the W3C or OASIS. Because of their business
origin, some speci�cations are competing and at the best become de facto
rather than de jure standards.

9http://webservices.sys-con.com/read/164624.htm, last viewed 2008-03-22

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 83

5.3.2 REST based Web Services

The idea of Web Services based on the REpresentational State Transfer
(REST)10 principle is to directly rely on the technologies already provided
by the World Wide Web, rather than creating new ones.

The key technologies for REST are [48]:

� Uniform Resource Identi�ers (URIs)

� HTTP

� XML

While SOAP-based Web Services also use these speci�cations as the fun-
dament for higher level protocols, REST directly relies on them for provid-
ing a Service Oriented Architecture. In contrast to SOAP based services,
which reduce the application layer HTTP protocol to a transport protocol
that could easily be substitued by any other protocol for transportation like
e.g. SMTP, XMPP or JMS [74], REST Web Services directly leverage the
methods provided by HTTP for CRUD (Create, Read, Update, Delete) op-
erations. In the REST world the HTTP methods are called verbs, which the
developer can use to describe the intended action. The relationship between
CRUD-operations and HTTP methods is shown in table 5.1 [75].

General Action HTTP Method

Create PUT
Read GET
Update POST
Delete DELETE

Table 5.1: Relationship between HTTP methods and CRUD operations

The proper use of these HTTP methods (verbs) provides RESTful Web
Services with a uniform interface, as they specify the allowed operations
which always leave the service in a consistent state [20, 56].

Key properties of RESTful Web Services are [20,75]:

� Stateless
Rest based Web Services are stateless, which means that each request
travelling from client to server must always contain all the necessary

10The term REST was coined by Roy Thomas Fielding in his PhD thesis �Architectural
Styles and the Design of Network-based Software Architectures� http://www.ics.uci.edu/
~�elding/pubs/dissertation/top.htm, last viewed 2008-03-24

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 84

context to understand the request. A good test whether a Web Service
should be designed RESTful could be to test if the interaction with
the service survives a restart of the host without any impact.

� Resource identi�cation with URIs
RESTful Web Services are built with URIs that uniquely identify re-
sources. The service provider publishes a service under an unique URI
which can be accessed by the service consumer over HTTP by using
the appropriate verbs.

� Communication through the transfer of representations of
resources
The response of a request is the representation of a REST Web Service
resource and is usually transferred in the form of pure XML, although
any other format like e.g. JavaScript Object Notation (JSON) is also
imaginable.

As a must in any Service Oriented Architecture, RESTful Web Services
too have to be described in order to be properly invoked. Opposed to SOAP
based Web Services which precisely describe the exchanged messages in a
WSDL-�le, there exists no such speci�cation for RESTful services. But
WSDL can be �borrowed� from SOAP services � Instead of the traditional
SOAP-binding, the newly introduced HTTP-binding of WSDL 2.0 could be
used to describe the service on the basis of HTTP [14].

Another alternative is to describe the invocation in an humanly under-
standable format and make it publicly available (e.g. in the form of an
HTML-page, or a WSDL-�le that is read by a human designing the service
consumer) [16].

5.4 Mobile SOA

Like AJAX for mobile devices (see section 4.3.2), mobile SOA is not a new
paradigm but the application of an existing approach in the realm of mobile
computing. Basically any Service Oriented Architecture can be applied on
a mobile infrastructure, as long as the device (platform) supports it. In
contrast to proprietary solutions like DCOM, .Net Remoting, CORBA, Java
RMI, etc., Web Services o�er the compelling advantage of being platform
and programming language agnostic. This is espescially important for the
fragmented mobile device market (see chapter 3), in which it is by no means
unlikely that the service producer residing on the server is programmed in
another language than the consuming mobile client.

Another advantage of Web Services is that they levarage standardised
web technologies like HTTP, which transports tra�c over well-de�ned ports
that should not normally be blocked by a �rewall.

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 85

5.4.1 SOAP-based versus RESTful Web Services

Given their limited nature, mobile Web Services are virtually exclusively
service consumers. In fact almost all mobile Web Services frameworks like
Java ME Web Services Speci�cation (JSR-172) or the .Net Compact Frame-
work Web Services stack exclusively allow the consumption of Web Ser-
vices [44, 83]. This means that the mobile Web Service developer may not
have the possibility to choose between SOAP and REST but has to stick
to whatever interface the server o�ers. If the server architecture can be in-
�uenced, or the service producer o�ers both a RESTful and a SOAP-based
interface, the decision has to be made which approach to incorporate.

The following list compares SOAP-based to RESTful Web Services in the
context of mobile computing:

� Requirements
RESTful Web Service consumers are technologically less demanding
than their SOAP-based counterparts. The minimum requirements for
both approaches is an HTTP-connection and a XML-parser, as well
as optional threading-support for augmenting the responsiveness by
creating the service call non-blocking. SOAP services also require a
SOAP API (also SOAP stack) for automatic message creation and
unmarshalling according to the provided WSDL-�le.

Many of the native platforms described in chapter 3 o�er a SOAP stack.
Alternatively Java provides a SOAP API in the form of JSR-172 and
the Open Source kSOAP library. All implementations in common is
that they only support a subset of the technologies available to desktop
SOAP stacks [57].

� Network tra�c
In RESTful Web Services, only the core XML message-body is trans-
ferred over the network. No SOAP-headers or additional layers of
SOAP-elements need to be communicated [75]:

REST is particularly useful for limited-pro�le devices such as
PDAs and mobile phones, for which the overhead of headers
and additional layers of SOAP elements on the XML payload
must be restricted.

This limits the overall amount of data needed for communication,
which can be a great performance bene�t for resource scarce limited
wireless networks.

Opposed to a SOAP-request message-envelope, RESTful Web Service
requests can be made using the HTTP-GET method with a few query-
string characters as parameters.

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 86

� Response parsing
Concerning response parsing both approaches are equal. The mere
SOAP-message body without the SOAP-headers is usually equivalent
to an REST-XML message, which means that both have to be pro-
cessed in an appropriate way by the consuming service.

� Processing model
The processing model is one of the strenghts of SOAP. It describes
how headers have to be processed by intermediary nodes on receiving
a SOAP message. This way it can in�uence the message path by en-
forcing qualities of service like encryption or reliable and acknowledged
delivery [81]. This is a feature completely missing out of the box in
REST-based Web Services and would have to be built manually.

� Error handling
Fault handling is another very useful feature of SOAP-based Web
Services. The �ve fault codes (VersionMismatch, MustUnderstand,
DataEncodingUnknown, Sender, Receiver [81]) can be used for au-
tomatic error handling. Additionally SOAP fault messages contain
human readable error-description, which can help in building and de-
bugging the software. REST-messages do not provide a built-in fault-
handling model. A common approach is to silently ignore faulty mes-
sages.

In summary RESTful Web Services tend to be more applicable for con-
strained mobile environments than SOAP-based services. The lower techni-
cal requirements and the overall lower network tra�c should usually outweigh
the bene�ts of a strong processing model and the well de�ned error handling
o�ered by SOAP Web Services.

Even the creators of the Open Source kSOAP Web Service client library
for constrained Java environments advice their users to use RESTful Web
Services for mobile devices whenever possible11:

Please note that SOAP introduces some signi�cant overhead for
web services that may be problematic for mobile devices. If you
have full control over the client and the server, a REST based
architecture may be more adequate.

5.4.2 Security

The security issue will not thoroughly be expanded on in this paper, but at
least the most important mechanisms and possibilities for securing a mobile
Web Services application should be mentioned.

11http://ksoap2.sourceforge.net/, last viewed 2008-03-27

CHAPTER 5. SERVICE ORIENTED ARCHITECTURE 87

First of all, the chosen platform must at least have support for Secure
Socket Layers (SSL) or Transport Layer Security (TLS) in order to pro-
vide basic encryption and authentication mechanisms. This is by no means
self-evident for mobile devices, as cryptographic ciphers and secure network
protocols tend to be very CPU intensive and thus can quickly drain the de-
vice's battery or even be incomputable for very weak CPUs. As described in
section 3.2, SSL and TLS support was not available in the Java ME MIDP
until version 2. All other platforms introduced in chapter 3, including Java
MIDP 2, do of course o�er at least basic encryption ciphers and security
protocols.

No matter if a mobile Web Service is implemented with SOAP or REST,
it will almost de�nitely be implemented based on HTTP. Such an HTTP
based distributed scenario basically o�ers the following three authentication
schemes, which can also be implemented on a mobile device:

� The client holds a trusted certi�cate that it uses to authenticate with
the server over a Public Key Cryptographic System (PKCS) on trans-
port layer.

� The server ensures the authentication via standard HTTP authentica-
tion mechanisms.

� The client and the server negotiate an authentication mechanism on
top of an application protocol, which encodes the authentication data
into the transferred payload.

Chapter 6

Mobile Search Client

Prototypes

6.1 Overview

After the �rst theoretical part that provided an overview about mobile com-
puting, mobile operating systems, mobile web applications and mobile Web
Services, this chapter will describe two concrete mobile enterprise search
client prototype applications, developed for Mindbreeze Software GmbH.

Many of the �ndings from the previous chapters directly in�uenced the
presented prototypes or aided in narrowing the problem domain. The proto-
types described in this chapter have an explorative character and are meant
to showcase the possibilities of a SOA based search client by means of two
quite distinct platforms. The �rst client is a mobile AJAX web application
tailored for the iPhone and the second prototype is a native client realized
with the Open Handset Alliance's new Android platform.

6.2 Choice of platform

As chapter 3 about mobile phone operating systems showed, there exists a
large number of native smartphone application development platforms. In
addition, the fragmentation of middleware application platforms like Java is
substantially higher than for desktop computing. Many operating systems
support Java ME (see chapter 3), yet the available components di�er signif-
icantly from platform to platform and an on-the-�y installation of missing
packages mostly is impossible due to either device, network or operating
system limitations. Even web applications that are today developed rather
uniformely for desktop computers, due to the browser consolidation and the
dominance of Microsoft Internet Explorer and Mozilla Firefox, are di�cult
to write in an integrative manner for mobile devices. Chapter 4 shows that
one has to consider many di�erent browsers that might interpret standard

88

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 89

technologies di�erently and also the supported technologies vary signi�cantly
from static WAP 1.0 to AJAX. Additionally mobile devices have very di�er-
ent form factors with considerably varying screen sizes and input facilities,
which further complicates application development.

A simple choice of the platform for a mobile application can consequently
not be made and depends on various factors. Amongst others they comprise:

� Di�usion of the platform
One key aspect of a mobile phone application is to reach as many
people as possible, though picking the universal platform is virtually
impossible. The mobile device market is much less consolidated than
the personal computer market with its Microsoft Windows dominance.
Also it is subject to rapid changes not imaginable in the desktop mar-
ket. E.g. the iPhone which has been introduced in summer 2007 al-
ready held a market share of 7 % of the worldwide smartphone sales in
quarter 4 of 2007 (see table 3.1 on page 14). More information about
the most important smartphone platforms is provided in chapter 3.

� Technical possibilities
Di�erent platforms o�er di�erent levels of interaction with the device.
Usually low level access is required to make use of the device context
or to tweak maximum performance. But using low level APIs also
means more commitment to a speci�c platform and usually also in-
volves writing more complex and time-consuming applications. Figure
6.1 depicts the position of the three prevalent mobile development tech-
niques native code, Java ME and web applications in relation to ease
of development and functionality and performance (According to [22]).

Figure 6.1: Position of native code, Java ME and mobile web applica-
tions in relation to ease of development, functionality and performance

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 90

� Organizational constraints
Besides the technical considerations there may be various organiza-
tional reasons that in�uence the choice of a particular platform, like
amongst others:

� What devices do my customers have?

� What development skills does my team have?

� What platform o�ers the best deployment scenarios?

� What platform best �ts our existing IT-infrastructure?

� Which platform has very good future prospects?

� Pricing and licensing?

Two very distinct platforms have been chosen as the basis of the proto-
type enterprise search client applications presented in this paper:

� Mobile web application customized for the iPhone
The Webkit based iPhone browser o�ers one of today's most sophis-
ticated mobile browsers (see section 4.3.2 on page 69). It provides
almost the same set of functionalities as a desktop browser and allows
for creating rich web applications with full AJAX support. Due to the
use of standard Internet technologies, mobile applications can be de-
veloped quite rapidly. The complete lack of device access means that
no interaction with the system APIs is possible. Hence the client is
restricted to just being a consumer of the search services o�ered by the
server.

The choice of the iPhone client is mostly motivated by the new evolu-
tionary possibilities it o�ers in the �eld of mobile web applications and
the high business relevance it already gained since its market launch.

� Google Android native application
The Android client is on the opposite side of the technological spec-
trum, as it represents a native development platform with full access to
the device APIs. It provides e.g. access to positioning data, PIM (con-
tact lists, calendar data, etc.), call logs, mass storage cards (SD-cards),
etc. While any native development platform described in chapter 3 of
this paper could have been elected as the native client platform, An-
droid was chosen since it provides a new application model tailored for
mobile applications, which could potentially enable the creation of new
up to now unexpected mobile applications. As one of the newest mobile
smartphone platforms, Android shows quite well which direction mo-
bile computing could take in the very near future. Also Google's strong
market position could make it an economically important platform in
the future.

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 91

The goal of the prototypes was not their direct mass marketability, but
to show and evaluate what can already be done today with the respective
technology as the basis for a mobile enterprise search client. If instant mar-
ketability was the prevalent criterion, the choice of platforms would have
been di�erent. According to di�usion of the platform, possible candidates
could have been e.g. a WAP 2.0 web client and a S60 or UIQ (Symbian OS)
native client. Another promising candidate could have been Java ME, which
technologically sits in between these two paradigms and has a large (though
fragmented) di�usion accross various devices.

6.3 General Setup

The basic setup is the same for both clients: A Web Services consumer that
issues search queries to the Mindbreeze Enterprise Search (MES) server and
gets a search response back as result. The MES provides a SOAP based as
well as a RESTful Query Service for querying information from the server.
On a standard installation, the SOAP Query Service can be reached under
the URL https://localhost:23300/soap and the REST Query Service un-
der https://localhost:23300/find. Of course in a real world environment,
protocol (http or https), server name and port can be chosen by the system
administrator according to the company's needs.

The SOAP API for Java and .Net, distributed with the Mindbreeze En-
terprise Search SDK, runs underneath a set of high level wrapper classes,
which abstracts the use of SOAP from the application developer.

6.3.1 RESTful Web Service

Out of various reasons explained in more detail in section 5.4 about mobile
SOA, the REST based Query Service has been chosen as the communication
interface to the search server. It allows for querying results via GET as
well as POST. The GET-request is formulated with a set of speci�ed query-
parameters whereas the POST-request is made with an XML document as
payload. The GET- and the POST-method have exactly the same power,
which means that every GET-request can always be formulated as a POST-
request and vice versa.

The returned response always is in the form of an XML document. The
XML-Schema for creating the request (SearchRequest), as well as the schema
de�ning the XML response are precisely documented in the WSDL-�le de-
scribing the SOAP Query Service in the MES SDK documentation [39, 5.1.2
Query Service]. In fact the exchanged XML messages are exactly the ones
contained in the SOAP-body of the SOAPWeb Service. This way the WSDL
document also serves as a perfect description of the RESTful interfaces.

Listing 6.1 and 6.2 both show an exemplary search request for the term

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 92

�Mindbreeze�. Listing 6.1 represents the GET-version and listing 6.2 its
POST equivalent. The GET variant has the bene�ts of more precisely abid-
ing by the REST de�nition1 and being less verbose which results in less
network tra�c. The downsides of GET over POST are that for browser ap-
plications there is a limit to the maximum length of a GET querystring and
that the search terms need to be encoded more precisely.

1 query=Mindbreeze&start=0&count=1&algorithm=default&samplelength=0&

metadatasamplelength=0&detailedcount=auto&embed-menu=true&embed-icon

=true

Listing 6.1: Instance of a MES Query Service GET search request

1 <SearchRequest sessionid="acf3d86b-95d8-4517-a33f-02884faa6dd6">

2 <Query>

3 <AndConstraint>

4 <StringConstraint language="human" string="Mindbreeze"/>

5 </AndConstraint>

6 </Query>

7 <Options>

8 <Range start="0" count="1"/>

9 <ContentSamples length="0"/>

10 <MetadataSamples length="0"/>

11 <Subtotals timeperiod="auto"/>

12 <Capabilities>

13 <Capability value="tag:mindbreeze.com,2007/contextitems/contextmenu

"/>

14 <Capability value="tag:mindbreeze.com,2007/contextitems/contexticon

"/>

15 </Capabilities>

16 </Options>

17 </SearchRequest>

Listing 6.2: Instance of a MES Query Service POST search request

Listing 6.3 shows an exemplary response to the search requests from
listing 6.1 and 6.2 (response has been trimmed for clarity).

1It overloads the RESTful meaning update of the POST-verb with read from GET (see
section 5.3.2 for more details).

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 93

1 <SearchResult>

2 <Context>

3 <ContextItems>

4 <Item id="tag:mindbreeze.com,2007/contextitems/contextmenu;89882

bf36df7be60" type="tag:mindbreeze.com,2007/contextitems/

contextmenu">

5 <Action name="Open" pattern="file:///key"/>

6 </Item>

7 </ContextItems>

8 <MetadataRowsets>...</MetadataRowsets>

9 </Context>

10 <Hits totalcount="2758">

11 <DetailedCount type="discrete">

12 <Count timespan="2006">1</Count>

13 <Count timespan="2007">10</Count>

14 <Count timespan="2008">1</Count>

15 </DetailedCount>

16 <Hit id="0" ctxmetadatarefid="11527808229362188050" categoryid="File

" categoryinstance="\\Mestest\C_Share" date="20071023144952" key

="\\Mestest\C_Share\Program Files\Mindbreeze\Enterprise Search\

Server\Additions\White Paper for Mindbreeze Enterprise Search (

en).pdf" score="56.7164" count="107" title="White Paper for

Mindbreeze Enterprise Search (en).pdf" categoryclass="pdf" size=

"1693678">

17 <ContextItems>

18 <Item type="tag:mindbreeze.com,2007/contextitems/contextmenu" ref

="89882bf36df7be60"/>

19 </ContextItems>

20 <OptDatas>

21 <OptData optdatakey="extension" optdatavalue="pdf"/>

22 <OptData optdatakey="directory" optdatavalue="\\Mestest\C_Share\

Program Files\Mindbreeze\Enterprise Search\Server\Additions"/

>

23 </OptDatas>

24 </Hit>

25 </Hits>

26 </SearchResult>

Listing 6.3: Instance of a MES Query Service search response

Generally the exchanged data is self-explanatory. The number of re-
turned hits can be limited with the start and count attributes. This is
especially important for a mobile environment, as the transferred payload
should be limited. Another important feature is that every hit holds a ref-
erence to a context menu describing the actions that are possible for the
particular content type. For that purpose the key attribute of the <Hit>-tag
has to be replaced with the key placeholder of the <Action>-tag of the
corresponding context menu. In listing 6.3 the hit's key is a pointer to a
�le on the local network. In a real world scenario, the context menu greatly
depends on the applications and data types the MES is fed with and what
actions each of the applications o�ers for a particular �le.

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 94

6.3.2 Security and Authentication

The Mindbreeze Enterprise Search provides many ways of auhentication
(see [39, 1.3.5 Authentication and Authorization]) like Kerberos or NT Lan
Manager (NTLM). Still, for the prototypes test environment the option �Un-
restricted Public Access� was chosen. This grants access to all �les of the
search index without any kind of authentication. While this would be inap-
propriate for a real world scenario, it greatly helped to reduce the complexity
of the protoype applications and allowed to focus on the mobile peculiarities
of the respective client platform.

6.4 Mobile AJAX � iPhone

The purpose of the iPhone prototype is to consume data provided by the
Mindbreeze Query Service. It can be seen as the mobile counterpart to
the already existing Mindbreeze Search Web Client. It provides a search
interface with basic re�nement options. Being a mobile web application, it
can not make use of the device context or access any data stored locally on
the phone.

The iPhone prototype was used as the mobile frontend showcasing the
�exibility and power of Mindbreeze Enterprise Search together with Fabasoft
Folio, which can e.g. transform non iPhone �les on the �y into PDF docu-
ments, at the Gartner Portals, Content and Collaboration Summit (PCC)
in Baltimore (USA) from March 26 to March 28 20082.

6.4.1 Graphical User Interface (GUI)

The GUI of the mobile AJAX client is tailor-made for the iPhone, making
it look almost like a native application. As �gures 6.3, 6.4 and 6.5 show,
at �rst glance the browser based client is indistinguishable from a built-in
application. This is rooted in the fact that the prototype was developed using
typical iPhone colors and GUI components and that the URL text �eld (see
�gure 6.2 taken from [8]) has been hidden. As shown by comparison with the
standard Safari view on the iPhone depicted in �gure 6.2, the only di�erence
that clearly identi�es the client as a browser application is the button bar at
the bottom. By contrast to the URL text �eld, the button bar can not be
hidden/removed programmatically and will always remain visible in every
browser application.

The iPhone client was designed with the goal in mind to be as compact as
possible and to spare as much navigation from the user as possible. Hence
the entire application �ts into one single page. As �gure 6.3 (a) shows,
initially the main query �eld as well as all re�nement options are presented

2http://www.mindbreeze.com/mindbreeze/news---events/events/past-events---archive/
event_review/gartner_pcc_08.htm, last viewed 2008-04-16

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 95

Figure 6.2: iPhone Safari browser standard view

to the user. When the user tips the �nger into the query text box the virtual
keyboard of the iPhone automatically appears on the screen (see �gure 6.3
(b)). The search is initiated as soon as the user presses the done/fertig
button on the virtual keyboard.

Pushing the done/fertig button causes the virtual keyboard to vanish
and the search client to fetch the search response from the Query Service.
While the search is being processed, the re�nements part of the initial search
panel slides into the background, making place for the search result list and
an optional navigation panel (see �gure 6.4 (a)). As indicated in �gure 6.4
(a), the only re�nement option that stays visible is the date �eld. This has
been made to preserve resemblance with the desktop web client, which o�ers
the possibility of quickly re�ning a search result set by date.

By tipping the �nger on an entry in the result list, it gets highlighted
and shows its context menu. In the screenshot presented in �gure 6.4 (b),
the standard �Open� context menu entry is listed. In a real world scenario
the context menu usually is much more comprehensive and could o�er all
kinds of actions associated with a document and the user's context.

Finally, �gure 6.5 shows that the Mindbreeze iPhone client seamlessly
adjusts its layout if the phone is rotated into landscape orientation.

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 96

(a) (b)

Figure 6.3: iPhone client directly after launching (a) and while typing a
query into the query text box with the virtual keyboard (b)

6.4.2 Realization

In order for the iPhone web client to get the look and feel of a native appli-
cation, it uses a small graphical library called iUI3 developed by Joe Hewitt.
The iUI library consists of some image �les for iPhone style GUI elements
(buttons, arrow, backgrounds, . . .), a CSS document and a JavaScript �le.
Although iUI provides some advanced features like a native looking page
transition, with the next page sliding in from the left, the prototype only
uses its pinstripe background image and the bluish color gradient for the
title and navigation bar (see �gures 6.3 - 6.5).

The heart of the application are the methods that handle the AJAX call
to the search server and parse the returned result. As a concession to
the limited capacity of a mobile device, the prototype does not leverage
an AJAX-framework, but provides the AJAX functionality from scratch.
This allows for writing more speci�c code which results in less voluminous
JavaScript �les. Listing 6.4 shows an excerpt of the function that constructs
the SearchRequest object and passes the data to the XMLHttpRequest ob-
ject.

3http://code.google.com/p/iui/, last viewed 2008-04-16

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 97

(a) (b)

Figure 6.4: IPhone client after the search request has been processed (a)
and showing the context menu of a selected entry in the result list (b)

Figure 6.5: IPhone client in landscape mode

1 var xhr = new XMLHttpRequest();

2 function invokeSearchWS() {

3 ...

4 var sr = new SearchRequest("acf3d86b-95d8-4517-a33f-02884faa6dd6",

start);

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 98

5 xhr.onreadystatechange = populateResultList;

6 xhr.open("GET", searchServiceURI + "?" + sr.toHTTPQSString(), true);

7 xhr.send(null);

8

9 // alternative POST−request
10 //xhr.open("POST", searchServiceURI, true);
11 //xhr.send(sr.toXMLString(false));
12 }

Listing 6.4: iPhone prototype � Excerpt of JavaScript function invoking
the Web Service request

The SearchRequest object takes a session-id and the start position of
the �rst hit to be displayed as parameters. All other attributes like the query
text or any re�nement constraints are directly read from the respective input
boxes. Basically the SearchRequest object is structured like a Java Bean,
with private �elds that hold data values as well as setters and getters to set,
respectively retrieve them. The collected data can then either be transformed
into an HTTP querystring, or into a XML document.

JavaScript does not provide built-in methods for writing XML. Listing
6.5 shows the custom function that is used to construct the XML POST
search request.

1 function XMLElement(name, content) {

2 this._name = name;

3 this._content;

4 if (content == null) {

5 this._content = [];

6 } else {

7 this._content = content;

8 }

9 this._attributes = {};

10 this.setAttribute = function(key, value) {

11 this._attributes[key] = value;

12 };

13

14 /**
15 Add an XMLElement as content of this element
16 */
17 this.addContent = function(elem) {

18 this._content.push(elem);

19 }

20

21 this.toString = function(prettyFormat) {

22 var xmlStr = "<";

23 xmlStr += this._name;

24 for (var attKey in this._attributes) {

25 xmlStr += " " + attKey + "=\"" + this._attributes[attKey] + "\"";

26 }

27 if (this._content.length > 0) {

28 xmlStr += ">";

29 if (typeof(this._content) == "object"){

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 99

30 xmlStr += (prettyFormat) ? "\n" : "";

31 for (var i = 0; i < this._content.length; i++) {

32 xmlStr += this._content[i].toString(prettyFormat);

33 }

34 } else {

35 xmlStr += this._content;

36 }

37 xmlStr += "</" + this._name + ">";

38 } else {

39 xmlStr += "/>";

40 }

41 xmlStr += (prettyFormat) ? "\n" : "";

42 return xmlStr;

43 }

44 }

Listing 6.5: iPhone prototype � JavaScript function constructing XML
elements

The onreadystatechange attribute shown in �gure 6.4 takes the name
of the method as value that will handle the asynchronous response and
display the returned data to the client, after the response has been pro-
cessed by the server. An highly trimmed version of this method named
populateResultList is shown in listing 6.6.

1 function populateResultList() {

2 if (xhr.readyState == 4) {

3 if (xhr.status == 200) {

4 var xmlDoc = xhr.responseXML;

5 var root = xmlDoc.getElementsByTagName("SearchResult")[0];

6 //Indicates the last tranche − no more results found for query
7 var endofhits = root.getAttribute("trigger") != null &&

8 root.getAttribute("trigger") == "endofhits";

9

10 // collect the data for the context−menus
11 var contextItems = root.getElementsByTagName("Context")[0]

12 .getElementsByTagName("ContextItems")[0]

13 .getElementsByTagName("Item");

14

15 ...

16

17 var hits = root.getElementsByTagName("Hits");

18

19 //exit with no results found
20 if (hits == null || (hits.length == 1

21 && hits[0].getAttribute("totalcount") == "0")) {

22 $("resultList").innerHTML = $("resultCountLabel").innerHTML = "No

results found.";

23 return;

24 }

25

26 ...

27

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 100

28 //get all the values and display them in the list
29 $("resultList").innerHTML = "";

30 for (var i = 0; i < hit.length; i++) {

31 // �ll the hit−Bu�er with the information displayed for each hit
32 //(e.g. name, date, size , directory , ...)
33 var hitBuf = "...";

34 $("resultList").innerHTML += hitBuf;

35 }

36 }

37 } else {

38 $("resultList").innerHTML = "Server can't process the request. Error

-Code: " + xhr.status;

39 }

40 }

Listing 6.6: iPhone prototype � Excerpt of JavaScript function handling
the asynchronous response and �lling the result list

Firstly, the ready-state and the HTTP response code have to be checked
to ensure all data has been received correctly (see section 4.3.1 for details).
If everything went well, the resulting XML document can be parsed.

The XHR responseXML attribute holds the received XML �le as Docu-
ment Object Model (DOM) document. A DOM parser holds the entire XML
document in memory and allows for parsing it along all its axis. Another
very popular XML parsing concept is the Simple API for XML (SAX). Un-
like the DOM, SAX does not load the entire XML document into memory,
but parses it serially. Whenever a match (e.g. opening tag, attributes, clos-
ing tag, . . .) occurs, the SAX parser raises an event that can be handled by
the developer. Once a certain token has been parsed it is gone, which means
that back references and random access are not possible. The advantage of
SAX over DOM is that it needs less memory. More information about DOM
versus SAX can e.g. be found in the W3C's DOM FAQ4.

As shown in section 6.5.4, the Android prototype is built using a SAX
parser. For the JavaScript client there is no choice since the responseXML

�eld already stores the XML as DOM document. The only other alternative
would be to use the string result provided by the XHR responseText �eld
and to process it by using regular expressions. Not only would this very likely
result in worse performance, but also substantially increase the complexity
of the parsing process.

6.4.3 Special Considerations for the iPhone

Generally web application development for the iPhone works like for a desk-
top computer. Only a few things have to be considered additionally:

� Limited Screen Size
The most apparent di�erence between an iPhone and a desktop com-

4http://www.w3.org/DOM/faq.html#SAXandDOM, last viewed 2008-04-16

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 101

puter is the limited screen size. Although the iPhone screen measures
320 x 480 pixels in portrait mode [8], the viewport is initially set to
a width of 980 pixel. Though this is a reasonable default for most
of today's standard web applications, it is not appropriate for iPhone
tailored sites. To change the viewport to the actual size of the phone,
the iPhone proprietary viewport-meta-tag has to be used:

1 <meta name="viewport" content="width=320; initial-scale=1.0;

maximum-scale=1.0; user-scalable=0;" />

� Event handling & virtual keyboard
Safari on the iPhone does not exactly support the same events as the
desktop version. Some events (e.g. onmouseover) are not supported
at all, others may be raised at di�erent points in the JavaScript event
handling model.
In case of the MES client prototype this is especially crucial for the
triggering of the search. The search is �red, when the query text box
loses focus, which is modelled in JavaScript with the onblur event.
This event is raised on the iPhone, when the user hits the done button
on the virtual keyboard, which is exactly the desired behavior.

� Limited cache size
Compared to a desktop browser, the Safari on the iPhone has very lim-
ited cache capabilities (see section 4.3.2). Only individual documents
with an overall size of less than 25 KB will be cached by the browser5.
The limit applies to the unzipped version of the �le which means that
even if a gzip compressed �le has less than 25 KB, it will only be
stored in the cache, if its uncompressed size is smaller than 25 KB. As
a consequence, too big �les (e.g. JavaScript libraries) should be at best
avoided or at least split up into several smaller �les.

6.4.4 Deployment

The easy deployment de�nitely is one of the biggest advantages of any web
application. Updates and changes only have to be performed at one single
location � the server. The actual rollout on the client is as easy as pressing
the browsers refresh button.

Special caution has to be taken on the same origin policy of AJAX ap-
plications. As mentioned in section 4.3.3, only scripts that point to the
exactly same server from where the AJAX �le has been loaded, will be ex-
ecuted. That is why for the development of the iPhone prototype, a simple
Java Servlet proxy had to be written. It resided on the same server on which

5http://yuiblog.com/blog/2008/02/06/iphone-cacheability/, last viewed 2008-04-16

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 102

the prototype application was and simply passed all requests and responses
between the search client and the MES Query Service.

For the presentation of the client at the PCC, the code was directly
included into the built-in MES client service that also delivers the Mindbreeze
Search Web Client, making the proxy redundant.

6.5 Native Application � Android

As mentioned before, compared to the iPhone web application, the native
Android client represents the other side of the technological spectrum in
regard to access of device functionalities. The Android platform exposes
many APIs to the developer that allow to take advantage of the mobile
context or low level device features such as amongst others camera, GPS,
compass, accelerometer, PIM (contacts, call logs, SMS, e-mail, etc.), mass
storage card or 3D graphics.

In addition to o�ering the same service consumer functionalities as the
iPhone web client, the Mindbreeze Android client will also make use of the
so called content providers o�ered by the Android platform. The concept
of content providers is unique to the Android platform. In a nutshell they
represent an interface that lets applications share data among each other
in a uniform way. All built-in Android applications, like e.g. addressbook,
calendar, SMS, etc. expose their data as content providers. More informa-
tion about content providers is given in the next section about the Android
platform.

The concept of the Mindbreeze Android search agent is to crawl all the data
stored in any content providers found on the device and push it into the index
on the server via a Web Service interface. This includes the providers known
at installation time like the ones of the built-in applications, as well as any
providers exposed by third-party applications at runtime of the client, which
allows the client to �grow� alongside the device and the applications being in-
stalled. A detailed overview of the architecture of the mobile Android client
is given in section 6.5.2.

6.5.1 Android Architecture Overview

The Android platform possesses some unique concepts which the prototype
application builds-on. It is important to have a general overview of these con-
cepts in order to fully understand the prototype architecture. As at present
no o�cial book about Android has yet been released, all herein presented
information was taken from the o�cial Android online documentation6.

6http://code.google.com/android/documentation.html, last viewed 2008-05-07

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 103

Key structures

The Android platform consists of �ve building blocks, which can be used to
build an application:

� Activity

� Intent & Intent Filter

� Intent Receiver

� Service

� Content Provider

Every application is a composition of some or even all of these building
blocks, yet not all components have to be incorporated in every Android
application.

Activity Activity is the main building block of an Android application.
It represents a single graphical screen. This means that every screen that
is displayed by an application is an activity of its own. A task list appli-
cation e.g. that o�ers the user two screens, one with a list overview of all
tasks and one with a detail view of a selected item, would hence have two
activities. An activity is composed of views, which represent individual GUI
components like buttons, lists, text�elds, etc. In fact all user interfaces that
handle screen layout and interaction with the user are derived from the basic
class android.view.View. This is a concept similar to that of other GUI
frameworks. An overview of the most commonly used views can be found in
the Android view gallery7.

Intent & Intent Filter Unlike the other Android building blocks, intents
and intent �lters are not responsible for directly operating on data. They are
rather the key components in the Android event framework (intent resolution
framework) to start certain operations8. In particular they are responsible
for starting activities, intent receivers and services.

As their name implies, intents represent the intention of an application or
the system to do something or to inform other applications about something.
An intent is expressed by de�ning an action that describes what should be
done and the corresponding data, which de�nes the set of data the intent
operates on. The data the activity can operate on is de�ned through a
unique Uniform Resource Identi�er (URI). The actions are described through

7http://code.google.com/android/reference/view-gallery.html, last viewed 2008-05-07
8The o�cial Android online documentation does not talk about intent & intent �lters

as building blocks but rather attaches them to activities, services and intent receivers.

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 104

prede�ned system constants, or through new constants speci�ed by a third
party application.

For the understanding of the Android intent mechanism it is important
to know that the system di�erentiates between two di�erent types of actions:

� activity actions and

� broadcast actions

Activity actions are used to navigate from activity to activity (screen to
screen). In Android the code to show a new screen is not directly coded in
the calling activity. The calling activity rather expresses in an intent what
it wants to be done. This allows for a loosely coupling between user actions
and the resulting screens. Amongst the most common activity actions are
MAIN_ACTION, EDIT_ACTION, PICK_ACTION, VIEW_ACTION,
DELETE_ACTION, etc.

E.g. an application that wants to display a graphical view of the �rst
record of all people in the address book could create an activity with the
action VIEW_ACTION and the data URI content://contacts/1.

On the other side an acvitiy that wants to show up when a record of
a person should be displayed has to describe in its intent �lter that it is
capable of doing so. An intent �lter is de�ned in the applications deployment
descriptor (see section 6.5.1).

The process of resolving an intent happens at runtime. When the user
triggers an action that starts an intent, the system looks at the intent �lters
of all installed components and picks the one that best �ts the requested
criteria.

This clear separation of data and actions performed on the data is one
of the strengths of Android. It is theoretically possible to replace any appli-
cation (including the built-in ones) with a new one, the user thinks is better
suited for a particular task. What is important is that all the applications
operate on the same set of data. If e.g. the user chooses to install a new mail
client that new application will specify in its intent �lters that it is capable
of handling all the actions the built-in mail client usually handles. As long as
the client remains installed, it does all the mail operations on the same set of
data the built-in client previously used. Once the user is bored with the new
application and either installs another one or resorts to reuse the old one,
no data will be lost, because all clients always operate on the same set of data.

Broadcast actions do not start an explicit activity or service. As their name
implies they represent broadcast data that is sent either by the Android
system or a third party application. Any application that is interested in a
particular broadcast can register an appropriate intent receiver in its deploy-
ment descriptor, which gets called whenever the broadcast is made. More
information on broadcast actions and intent receiver is provided in the next

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 105

paragraph about intent receivers.

Besides of the just explained implicit intents, Android also supports ex-
plicit intents. An explicit intent directly speci�es an explicit class name of
an activity or a service to be called. It is therefore not matched by the
system through the intent resolution mechanism. As a consequence, objects
called through an explicit intent do not have to provide an intent �lter in
the applications manifest. Although this means a tight coupling between
two components, this is often desired as it reduces the application complex-
ity. Many times the developer doesn't even want an activity or service to be
replaced by another one (e.g. login screen).

Intent Receiver In a nutshell, intent receivers can be used for execution
of code in response to an external event, like e.g. when the phone rings,
an application package has been installed or removed, the device has been
booted, etc.

As the name implies, intent receivers are also closely related to intents.
One of the main di�erences between activities and intent receivers is that
intent receivers are extremly short lived and solely used to handle broadcast
actions. Another major di�erence compared to activities is that they do not
display a user interface. They start up when they receive a broadcast they
are registered for and then perform some work in their onReceiveIntent()-
method. Once the onReceiveIntent()-method has �nished, the intent re-
ceiver is done. If an intent receiver does not manage to �nish its
onReceiveIntent()-method within 10 seconds, the Android system will re-
gard the receiver as blocked and mark it a candidate to be killed by the
process scheduler9 (for more information about the application life-cycle see
section 6.5.1). If an intent receiver is used to trigger a longer running action
(like e.g. network or I/O operation), the application programmer ought to
start a service (and possibly spawn a new thread) in the onReceiveIntent()-
method to save the intent receiver from being killed.

A unique feature of intent receivers is that the application they belong to
does not have to be running when the broadcast comes in. If necessary, the
Android system will start the application when an intent receiver is trigged.

An intent receiver has to specify in the applications deployment de-
scriptor via an intent �lter on what broadcast actions it should be trig-
gered. Typical standard broadcast actions are BOOT_COMPLETED_ACTION,
PACKAGE_ADDED_ACTION, PACKAGE_REMOVED_ACTION, SCREEN_ON_ACTION,
SCREEN_OFF_ACTION, TIMEZONE_CHANGED_ACTION, etc. In its most current
version (Build m5-rc15f), Android provides more than 40 broadcast actions.

9http://code.google.com/android/reference/android/content/IntentReceiver.html#
onReceiveIntent(android.content.Context,\%20android.content.Intent), last viewed 2008-05-
08

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 106

A complete list of all system broadcast (and activity) actions is provided in
the documentation of the Intent class10.

Such a powerful mechanism as broadcast actions is of course subject
to security restrictions. Some broadcast actions may impose permissions in
order to be received by an application. The permissions are also expressed as
constants that have to be included in the applications deployment descriptor.
The requested permissions are granted/denied at application install time.
Either based on checks with trusted authorities (code signing and certi�cates)
or through user interaction. More information about the Android security
features can be found in the �Security and Permissions�11 section of the
online documentation.

Service Services are long lived, have no user interface and execute in the
background. A typical example of a service is a media player application.
Although the player UI is no more in the focus of the user, it may still be
desired to keep playing the music in the background. It is important to note
that services, like other application objects, run in the applications main
thread. That is why they should spawn a new thread when doing any CPU
intensive tasks like I/O or network operations.

Content Provider Content providers are another unique concept of the
Android platform. They represent a kind of uniform wrapper over appli-
cation data and are the only way for applications to share data accross
packages. No matter how the data is stored internally, like e.g. as a SQLite
database, in a �le, or over the network, it can be exposed to other applica-
tions via a uniform content provider. Most of Android's built-in applications
like e.g. contacts, SMS/MMS, calendar, etc. publish their data over content
providers.

A content provider o�ers all CRUD (Create, Read, Update, Delete) op-
erations on its underlying data through its insert(), query(), update()
and delete() methods. They are accessed very similar to database records
as they also return a cursor in their query()-method.

Like activities, intent receivers and services, content providers have to
be registered in the applications deployment descriptor (see 6.5.1). This is
done by mapping the content providers class �le to a unique authority. For
third party applications, an authority usually is a full-quali�ed class name
to ensure uniqueness.

Content providers can be accessed via the ContentResolver12 class.
This class is provided by the Android runtime systems and resolves con-

10http://code.google.com/android/reference/android/content/Intent.html, last viewed
2008-05-07

11http://code.google.com/android/devel/security.html, last viewed 2008-05-07
12http://code.google.com/android/reference/android/content/ContentResolver.html, last

viewed 2008-05-15

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 107

tent providers by means of a unique content URI identi�er. The authority
together with a standard pre�x is the base part of an URI and used to
match an authority to a concrete provider class. It is roughly equivalent
to a database URL known from relational databases. The subsequent parts
of a content URI address the sets of data that can be accessed, as well as
indivdual records. This can roughly be compared to tables in a relational
database respectively individual rows.

In order to clarify things a bit, �gure 6.6 shows a sample content URI
taken from the Android online documentation13:

Figure 6.6: Exemplary Android content URI

A) The standard pre�x, which is always the same.

B) The authority of the content provider. Under this exact name the
content provider is registered within the Android system. If the content
provider class name of the provider was TransportationProvider, the
registration entry in the deployment descriptor could look like:

1 <provider class="TransportationProvider" authorities="com.example.

transportationprovider" />

C) The path to a particular set of data. This is roughly equivalent to a
table in a relational database.

D) A speci�c record being requested. This maps to a unique id-�eld in
the providers data set. If this last part is omitted, all records of a
particular data set are returned.

What is important to keep in mind is that the Android system is not
aware of the structures beyond the authority. From the reference �gure
6.6, only parts A and B are used for mapping the provider instance in the
deployment descriptor. This consequently means that application developers
need to make their full content URIs somewhere publicly available. As a
convention suggested by the Android online documentantion, this should be
done in a constant �eld of type Uri14 and the name CONTENT_URI, which

13http://code.google.com/android/devel/data/contentproviders.html, last viewed 2008-
05-07

14http://code.google.com/android/reference/android/net/Uri.html, last viewed 2008-05-
15

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 108

ensures that the URIs can easily be found in the Java documentation of the
application. As will be shown in section 6.5.4 about the realization of the
prototype, this convention is a key part for �nding all content providers of
third-party applications at runtime.

The AndroidManifest.xml File

The AndroidManifest.xml describes global values for a package, like amongst
others the application components (activities, intent receivers, services, con-
tent providers) their corresponding intent �lters as well as security restric-
tions and requested permissions. Although the Android online documenta-
tion15 does not use the notion of a deployment descriptor, the AndroidMan-
ifest.xml is conceptually similar to the web.xml deplyoment descriptor found
in Java Enterprise Edition web applications. The �le is always located in
the root folder of an application and the name AndroidManifest.xml must
not be changed.

The complete AndroidManifest.xml �le of the prototype application is
shown in listing 6.7 on page 121.

Application Life-Cycle

Another distinct feature of the Android system is its � compared to other
operating systems � unorthodox application life-cycle management. Like
on other Linux systems, every Android application normally runs in its own
process. The unusual behavior of the Android system is that the applications
process's lifetime is not directly controlled by the process itself. Instead the
Android system pursues a pre-emptive strategy which can result in the killing
of particular processes if the system is low on memory. The system uses a
mixture of the parts of an application it knows are running, how important
the application is to the user and the overall system memory to determine
the process's lifetime.

The application objects that in�uence the process life-cycle are Activity,
Intent Receiver and Service. The Android systems places these applica-
tion objects in an �importance hierarchy� to determine which ones should
be killed when the system is low on memory. According to the online docu-
mentation16, the order of importance is as follows (beginning with the most
important type of process to the least important one):

1. Foreground Processes
A foreground process is the most important type of process in the
Android system. This is a process that is immediatelly important to
the user. An application process is considered a foreground process if
one of the following conditions hold:

15http://code.google.com/android/devel/bblocks-manifest.html, last viewed 2008-05-08
16http://code.google.com/android/intro/lifecycle.html, last viewed 2008-05-08

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 109

� It is running an Activity on top of the screen.

� It has an IntentReceiver running in its onReceiveIntent()-
method

� It has a Service currently executing code in one of its callbacks
(onCreate(), onStart() or onDestroy).

The system will only kill such a process under extrem low memory
conditions (memory paging).

2. Visible Processes
A visible process is one that currently has an activity running visible to
the user but not running in the foreground. This can e.g. be if a fore-
ground activity has a dialog appearence and the previous foreground
activity is still visible to the user. Such a process (the one still being
visible to the user but not being in the foreground) is considered ex-
tremely important by the system and will only be killed if it is required
to keep all foreground processes running.

3. Service Processes
A service process is one holding a service that is currently executing
some code. This could e.g. be the background music played in the
service of an mp3-player application. These processes usually perform
things the user cares about, so they will only be killed if there is not
enough memory to keep alive all foreground and visible processes.

4. Background Processes
A background process is one that holds an activity that is currently not
visible to the user. Furthermore it is also not currently executing code
in a service or the onReceiveIntent()-method of an intent receiver.
The system will kill such a process at any time it needs to reclaim
memory. The choice of which process to kill exactly is made based on
a Least Recently Used (LRU) algorithm. For the application developer
this means that the activity life-cycle has to be implemented correctly
to avoid data loss or corruption.

5. Empty Processes
An empty process doesn't hold any active application components.
Empty processes could also be killed immediately, but they are kept
by the Android system as a cache to speed up startup time if they are
still in the memory the next time they are called. Quite clearly the
system will instantly kill such a process if it requires memory.

As a direct consequence to the Android application life-cycle manage-
ment, the application developer has to be aware of how to react to a situation
when the system kills an application process and design the a�ected classes
accordingly.

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 110

Another interesting fact is that Android runs all application objects (ac-
tivities, intent receivers and services) in the process's main thread. This
means that it is the application developer's responsibility to provide the
necessary threading to keep the application responsive and avoide a mutual
blocking of individual components.

6.5.2 Prototype Architecture

The architecture of the Android native client is divided into two main parts:
The service consumer and the content provider crawler.

The service consumer ful�lls the same functions as the mobile AJAX
client. The content provider crawler automatically scans all installed ap-
plications for available content providers and pushes the selected contents
to the Mindbreeze Indexing Service. Since the Mindbreeze Indexing Service
does not yet support the pushing of data, the push index for testing the
prototype is simulated by an upload servlet.

Service Consumer

The main purpose of the the service consumer part of the Android prototype
is to act as a mobile enterprise search client to the Mindbreeze Query Service.
Like the web client, it supports pagination for breaking bulky results into
several pages. A screen shot of the user interface is shown section 6.5.3.

Equally to the iPhone client it uses the MES Query Service which means
that it handles the same data exchange formats (see section 6.3). Since the
Android platform does not out of the box support a concept similar to that
of the AJAX XMLHttpRequest object, a non-blocking search request cycle
has been modeled.

Figure 6.7 shows the class diagram of the classes involved from issuing
the request to displaying the results to the user in a list. For the sake of
clarity, only the key �elds and methods of the involved classes are shown.

In order of execution, the following steps are performed when issuing a
request:

1. The user types a search phrase into a text box in the SearchClient

class. SearchClient is the main activity of the prototype. It is
lauchend when the application is started and runs in the main thread
of the application process. It is a subclass of ListActivity17, which
means that it is tailor-made for activities exposing lists.

2. As soon as the user issues the request, the input data is stored in a
SearchRequest object. This object can be serialized either as XML
string for being included as payload in an HTTP-POST request, or

17http://code.google.com/android/reference/android/app/ListActivity.html last viewed
2008-05-12

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 111

as query string parameters for use in an HTTP-GET request. In the
case of an XML serialization, a simple self written XMLElement class
is used for constructing the XML document, to avoid the need for a
potentially heavy-weight XML library.

3. The search request is then enqueued in the AsyncRequestManager.
This class provides functionalities similar to that of the AJAX XML-
HttpRequest object. It leverages the new concurrency features in-
troduced in Java 1.5, which are also available in Android and found
in the package java.util.concurrent. The Executor interface and
the ExecutorCompletionService class build a thread pool. The pool
only spawns one thread. If multiple requests are being made within
a short period of time, they are queued and are processed as soon
as the executor thread gets available. The class for actually conduct-
ing the request, HTTPRequestWorker, implements the Callable inter-
face and gets calculated from the executor thread in its call-method.
As soon as the server has �nished the request the returned HTTP
status code and the input stream (response body) are stored in an
HashMap, where the AsyncRequestManager can �pick� them up. The
AsyncRequestManager class itself runs in a separate thread and keeps
waiting for �nshed requests in its run()-method. Due to the non-
blocking nature of the take()-method from the
ExecutorCompletionService class, the object waits (goes to sleep)
until there is data available and hence avoids busy waiting.

4. Every call to a method that updates the user interface must be made
from the main UI thread (for more details see the Android online docu-
mentation18). Since the AsyncRequestManager spawns its own thread,
it is not possible to directly call the SearchClient class to update the
user interface. As a solution, Android o�ers the Handler19 class which
gets started on the UI thread (SearchClient) and allows for passing
messages to its message queue. The passed messages have to be of type
Message20, which is a wrapper for arbitrary data stored in a HashMap.

5. The processing of the message data is done in the handler's
handleMessage()-method. The returned response payload string is
read from the message and given to an instance of the
SearchResponseParser.

18http://code.google.com/android/reference/android/view/View.html, last viewed 2008-
05-12

19http://code.google.com/android/reference/android/os/Handler.html, last viewed 2008-
05-12

20http://code.google.com/android/reference/android/os/Message.html, last viewed 2008-
05-15

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 112

6. The SearchResponseParser is a subtype of DefaultHandler21 and
does the parsing of the response XML document by means of the
SAX parser provided by the org.xml.sax and javax.xml.parsers.
It wraps the parsed data in the Hit and HitContextMenu objects and
adds them to the respective methods provided by the ResultListAdapter
class.

7. Finally the custom adapter ResultListAdapter which extends
BaseAdapter22 and is attached to the SearchClient class is used to
update the search client user interface.

21http://code.google.com/android/reference/org/xml/sax/helpers/DefaultHandler.html,
last viewed 2008-05-15

22http://code.google.com/android/reference/android/widget/BaseAdapter.html, last
viewed 2008-05-12

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 113

F
ig
u
r
e
6
.7
:
A
n
d
ro
id

cl
ie
n
t
cl
a
ss

d
ia
g
ra
m

o
f
se
rv
ic
e
co
n
su
m
er

p
a
rt

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 114

Content Provider Crawler

The content provider crawler is designed to perform the following tasks:

� Discover all content providers of all installed applications (built-in as
well as third-party applications).

� Query their data and push it to the Mindbreeze Indexing Service.

� Keep track of changes and modi�cations to the providers and sychn-
ronize the changes with the Indexing Service.

A more detailed view of the functioning of the content provider crawler
is best provided by means of two of the most important use cases. The
installation of the application and the �rst login (see �gure 6.8), as well as
the �normal� operation once the application is installed (see �gure 6.9).

Installation and First Login The most important task the crawler has to
perform once the user has authenticated herself, is to scan the device for any
content provider exposed by the currently installed applications. As �gure
6.8 shows this is done by starting the ProviderScannerService. The service
�rst makes a full scan of all applications installed on the device and stores
the most important information about the found applications, their content
providers and the providers content URIs via the ContentProviderAdapter
in a local SQLite 3 database. More information about the content provider
discovery and how it is done programmatically is provided in section 6.5.4.

The resulting content providers are then registered in the long lived
ChangeListenerService which constantly monitors them with regard to up-
dates and modi�cations. The ChangeListenerService is the longest lived
of all services used in the content provider crawler application. It is started
immediately after the �rst successful login and will under normal circum-
stances only be stopped when the search client application gets uninstalled.
This is a key di�erence to all the other services of the application, as they
only exist as long as they actively perform a task.

As soon as all installed applications have been searched for content
providers, the list of discovered providers is displayed to the user, who then
has the possibility to selectively choose the providers she is willing to be
queried by the crawler.

Alongside the initialization of the ProviderScannerService and the
ChangeListenerService, the AlarmManagerReceiver intent receiver is cre-
ated. This receiver is registered for repeating alarms sent by the Android
system via the AlarmManager23. The AlarmManager is a scheduler that al-

23http://code.google.com/android/reference/android/app/AlarmManager.html, last
viewed 2008-05-14

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 115

lows an application to be run at some point in the future. The target appli-
cation does not have to be running to receive the intent, because it will be
started by the Android system if it is not currently alive. The system may
optionally even wake up the device if it is sleeping while the alarm goes o�.

In case of the Mindbreeze Android client, the AlarmManager is scheduled
to start the ProviderQueryService every three hours. Like the
ProviderScannerService, the ProviderQueryService is short lived and
executes in a separate thread to avoid blocking of the main thread. Its task
is to check the database for newly added or changed providers. If there are
some, it always queries the entire provider, even in case of a change to an
already queried provider24, and pushes all data to the server index. Finally
the timestamp of the query and similar meta information is stored in the
local database.

24Through the Android ContentObserver class it is only possible to detect that a content
provider has changed at all, not what has been changed.

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 116

F
ig
u
r
e
6
.8
:
S
eq
u
en
ce

d
ia
g
ra
m

o
f
A
n
d
ro
id

co
n
te
n
t
p
ro
v
id
er

cr
aw

le
r
a
t
�
rs
t
lo
g
in

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 117

Normal Operation The sequence diagram of the client in normal opera-
tion shown in �gure 6.9 is essentially very similar to that depicted in �gure
6.8. A few things need to be considered compared to the installation and
�rst login use case.

Firstly, the client application possesses the BootCompletedReceiver intent
receiver which gets called by Android after the system has �nished booting.
The purpose of this class is to start the long lived ChangeListenerService

that monitors all discovered content providers for changes as well as the
AlarmManagerReceiver that will regularly start the ProviderQueryService.
These tasks have been performed by the login routine in the �rst login use
case. Launching these functionalities at device boot time guarantees that
they are always running.

In contrast to the launching of the ChangeListenerService in the �rst
login use case, this time all content providers already stored in the database
are registered at start time in the services' onCreate()-method. This is nec-
essary because by contrast to intent receivers, content observers are normal
Java event listeners and hence have to exist at runtime in order to receive
events.

Another additional component is the PackageActionReceiver intent re-
ceiver. It is used to keep track of newly added or removed packages. When-
ever a new package gets added to the system, Android calls this class which
starts the ProviderScannerService that searches the newly added package
for any content provider. The procedure of the ProviderScannerService

is equivalent to that performed at initialization of the application, with the
only di�erence being that only one package is searched instead of all.

In case the system sends a package removed broadcast action, the
PackageActionReceiver launches the DeletionService which performs a
diametrically opposed task compared to the ProviderScannerService. It
removes the content observers of the uninstalled package from the
ChangeListenerService observer list, informs the Indexing Service about
the deletion and �nally erases all artifacts of the application from the local
database.

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 118

F
ig
u
r
e
6
.9
:
S
eq
u
en
ce

d
ia
g
ra
m

o
f
A
n
d
ro
id

co
n
te
n
t
p
ro
v
id
er

cr
aw

le
r
in

n
o
rm

a
l
o
p
er
a
ti
o
n

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 119

(a) (b)

Figure 6.10: Android client directly after launching (a) and after the search
request has been processed by the server (b)

6.5.3 Graphical User Interface (GUI)

In contrast to the iPhone client, the focus of the Android native client has
not been on the Graphical User Interface (GUI). It is a proof of concept to
investigate what possibilities a native mobile platform o�ers in respect to
leveraging the device APIs in an enterprise search scenario.

Figure 6.10 (a) shows the application directly after being launched. The
most apparent di�erence of the starting screen compared to that of the
iPhone client (�gure 6.3) is the presence of a search button. This stems
from the fact that before the availability of the �rst o�cially released An-
droid handsets it is hard to judge exactly what device form factors will be
available and how they are best treated in means of data input.

Figure 6.10 (b) depicts a screenshot of the client after the search request
has been processed and the results have been presented to the user.

The option menu buttons titled �Log in� and �Advanced�, shown at the
bottom of �gure 6.10 (b), appear if the user presses the menu button of the
phone. Clicking �Log in� takes the user to the login screen depicted in �gure
6.11 (a), the �Advanced� button opens the provider list activity shown in
�gure 6.11 (b).

Whenever an action occured that is relevant to the user, like e.g. a new

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 120

(a) (b)

Figure 6.11: Android client login screen (a) and overview list of discovered
content providers (b)

(a) (b)

Figure 6.12: Android client status bar noti�cation (a) and pull down menu
for navigating to the action intent of the noti�cation (b)

content provider has been found, or the querying of the content providers
has been �nished, or an application with a registered content provider has
been uninstalled, the notifaction shown in �gure 6.12 (a) is displayed in
the status bar. If the user pulls the noti�cation down, or presses a special
purpose button in case of a non touch screen device, the noti�cation pull
down depicted in �gure 6.12 (b) is shown. This menu contains an additional
description about the occurred event, as well as a timestamp for knowing
when it happend. By pressing the icon on the right or the description text
on the left, the user is taken to the activity associated with the noti�cation.

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 121

6.5.4 Realization

After the overview of the content provider crawler and the presentation of
its GUI, this section aims at providing an insight into the inner workings
of some of the parts of the application. Notably the AndroidManifest.xml
deployment descriptor, the underlying database schema as well as the content
provider discovery mechanism will be presented in more detail.

AndroidManifest.xml

As mentioned in section 6.5.1, every Android application has an Android-
Manifest.xml deployment descriptor that describes the most important val-
ues, classes and permission of an application. Listing 6.7 shows the Android-
Manifest.xml of the Mindbreeze Android crawler client application.

1 <?xml version="1.0" encoding="utf-8"?>

2 <manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.mindbreeze.mobile.android">

3

4 <!−− The NEEDED PERMISSIONS −−>
5 <uses-permission android:name="android.permission.

RECEIVE_BOOT_COMPLETED" />

6 <uses-permission android:name="android.permission.READ_CONTACTS" />

7

8 <application android:icon="@drawable/mindbreeze_icon_64x64_transp">

9

10 <!−− The ACTIVITIES −−>
11 <activity android:name=".SearchClient" android:label="@string/

app_name">

12 <intent-filter>

13 <action android:name="android.intent.action.MAIN" />

14 <category android:name="android.intent.category.LAUNCHER" />

15 </intent-filter>

16 </activity>

17 <activity android:name=".login.Login" />

18 <activity android:name=".advanced.ProviderList" />

19

20 <!−− The SERVICES −−>
21 <service android:name=".advanced.ChangeListenerService" />

22 <service android:name=".advanced.ProviderScannerService" />

23 <service android:name=".advanced.ProviderQueryService" />

24 <service android:name=".advanced.DeletionService" />

25

26 <!−− The INTENT RECEIVERS −−>
27 <receiver android:name=".advanced.BootCompletedReceiver">

28 <intent-filter>

29 <action android:name="android.intent.action.BOOT_COMPLETED"/>

30 </intent-filter>

31 </receiver>

32 <receiver android:name=".advanced.PackageActionReceiver">

33 <intent-filter>

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 122

34 <action android:name="android.intent.action.PACKAGE_ADDED"/>

35 <action android:name="android.intent.action.PACKAGE_REMOVED"/>

36 <data android:scheme="package" />

37 </intent-filter>

38 </receiver>

39 <receiver android:name=".advanced.AlarmManagerReceiver" />

40

41 </application>

42 </manifest>

Listing 6.7: Android prototype � AndroidManifest.xml File

Directly after the XML declaration and the <manifest>-root-tag that
de�nes the applications Java package name, is the de�nition of the required
permissions, which are the permission to receive system boot broadcast ac-
tions as well as the permit to read data from the built-in contacts provider.

The next tag is the <application>-tag which summarizes all classes of the
application that directly interact with the Android runtime system, including
activities, services and intent receivers. The class name of each component
is denoted by the android:name attribute. It can either be provided directly
as a full quali�ed Java class name or beginning with a dot, which results in
a full quali�ed class name as the concatenation of the package-attribute of
the <manifest>-tag and the respective class name fraction speci�ed by the
components android:name-attribute.

As �gure 6.7 shows, the search client application consists of three visual
activities that are speci�ed via <activity>-tags. As appareant through the
<intent-filter>-child-tags, the SearchClient activity is the applications
entry point and hence launched when the application is started.

Following the activity tags are the <service>-tags which list all the ser-
vices used by the application. It is import not to forget to list a service in
the deployment descriptor, because otherwise it can not be started.

Finally, the intent receivers of the application that receive the desired
system broacast actions are listed in the <receive>-tags. The broadcast
actions that trigger the launch of the intent receiver is declared in the
<intent-filter>-tags. The AlarmManagerReceiver does not have an
<intent-filter>-child-tag, because it is directly con�gured as intent of the
android.app.AlarmManager class at the initial login of the application, re-
spectively each time the device has �nished booting.

Database Schema

The database schema of the Android search client is held intentionally very
simple. Figure 6.13 shows that is used for storing the most important data
about applications, their associated content providers and the concrete con-
tent URIs, which allow for querying the providers. The mechanism of dis-

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 123

covering the data described in this data model is explained in more detail in
the next section (section 6.5.4). Content data gathered from querying the
content providers is not stored in the local database. This information is
only pushed to the Mindbreeze Indexing Service.

Figure 6.13: Database schema of the Android search client

An Android application does not necessarily need to have a content
provider. E.g. the Mindbreeze search client does not expose any data to
other applications and hence does not possess a content provider itself. Still
the cardinality between applications and providers in the schema is one to
at least one (1 1..*). This is due to the fact that only applications exposing
a content provider are stored in the local database. As a consequence all
applications listed in the database do at least have one content provider.

The rough relationship between the Android content provider and the re-
lational database model is shown in table 6.1.

Android Model Relational Model

Application Application
Content Provider Database
Content URI Table

Table 6.1: Comparison between Android content provider and relational
model

Content Provider Discovery Mechanism

The discovery of the content providers and moreover the content URIs of
applications installed on the device is the key part of the content provider
crawler. Responsible for this task is the ProviderScanner class, respectively
the ProviderScannerService, which calls the methods of the ProviderScanner

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 124

in its service routines.

Content providers are de�ned in an applications AndroidManifest.xml �le
via the provider tag (see the paragraph about content providers in section
6.5.1). The two mandatory attributes are android:name which holds the
name of the class that implements the provider as well as android:authorities
which serves as a unique identi�er of the provider within the Android system.
Every provider implementation must extend the abstract class ContentProvider25

which guarantees a uniform interface of every provider and allows the system
to programmatically query them via the ContentResolver class.

The key class to retrieving information from packages installed on the device
is the PackageManager26. It o�ers methods for getting information about all
applications currently installed on the device as well as methods for retriev-
ing the data of one particular package.

Almost all �elds shown in the database model in �gure 6.13 can be ex-
tracted from the methods o�ered by the PackageManager class. This includes
the application name, the APK and Java package name, as well as the con-
tent providers class name and its authority.

Besides the metadata, only one essential �eld shown in the data model still
is missing: the content URI. The content URIs needed to access content
providers are not known to the Android system and hence can not be gath-
ered from the PackageManager. From the sample content URI shown in
�gure 6.14 only the system part is known to the system. This is a direct
consequence of the fact that only the authority part is used to register a cer-
tain provider. Any queryable information exposed by the content provider
is not known to the Android system and the exclusive responsibility of the
application.

Figure 6.14: Android content URI divided into system and application part

Typically an application developer who wants to query a content provider
table takes the full quali�ed content URI (like e.g. the one showed in �gure
6.14) and calls the query method of the ContentResolver class. The An-

25http://code.google.com/android/reference/android/content/ContentProvider.html, last
viewed 2008-05-15

26http://code.google.com/android/reference/android/content/pm/PackageManager.html,
last viewed 2008-05-15

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 125

droid system then resolves the content provider implementation referenced
by the system part of the given URI and calls its query method with the
full content URI as parameter. Within the query method of the particular
content provider, it is the application developer's responsibility to choose the
desired table (and optionally a speci�c record) denoted by the application
part of the content URI and return the desired cursor.

As a consequence, the full content URI to a particular table has to be
known before querying the table. Since the Android system does not know
about the various tables inside a speci�c content provider, there does also not
exist a method for getting all table names at runtime like it is for example
possible with the SQL show tables command.

Normally this is not a problem, because the creator of a content provider
has to document all content URIs. As mentioned in section 6.5.1, the conven-
tion proposed by the Android online documentation is to make them public
in a static �eld of type Uri named CONTENT_URI.

Given that the content provider crawler needs the information about con-
tent URIs at runtime in order to be able to generically query them, it has to
re�ectively search all27 classes contained in a package for CONTENT_URI �elds
and read their values.

Re�ectively �nd the CONTENT_URI �elds Although Android fea-
tures the standard Java re�ection packages (java.lang.reflect) it proved
to be impossible, despite various di�erent experiments, to (recursively) read
all classes contained in an applications Java package. As an alternative an in-
direction via the Android classes.dex �le, which is contained in every Android
APK package, has been taken. The dex �le is the executable used by the
Android Dalvik JVM. By contrast to normal Java bytecode �les (.class-�les)
where every Java source �le is represented by one binary �le, the entire byte-
code of an Android application is contained in one single dex �le. Amongst
other information the dex �le also includes a class list which contains all
classes referenced or contained in the dex �le. This class list is used by the
ProviderScanner to retrieve all class names of a given application package.

As at the time of writing of the search client application the Dalvik JVM
and the dex �le format have not yet been open sourced, a description of
the dex �le format provided by the community28 served as the basis for
extracting the class names. The following list provides a schematic overview
of the steps involved in discovering the content URIs of an application:

1. The only thing known at the beginning is an applications Java pack-

27The Android documentation makes no recommendation about where to put the
CONTENT_URI �elds. The only thing granted is that they have to be somewhere in the
package of the application that exposes the provider.

28http://www.retrodev.com/android/dexformat.html, last viewed 2008-05-15

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 126

age name. This is either retrieved from the getInstalledPackages()
method of the PackageManager class in case of a full scan, or via the
package added broadcast action for applications that get installed after
the crawler is �rst used.

2. With the help of the getPackageInfo()method of the PackageManager
class, all of an application's content providers and their authorities can
easily be retrieved.

3. The next step is to load the context of the third party application with
the createPackageContext() method of the Context29 class.
Once the context is loaded, its Android package �le path can be elicited
with the getPackagePath() method of the context instance.

4. Since an Android package is a zip-�le, it can be unzipped with the Java
zip utilities provided by the java.util.zip package, which is part of
the Android platform.

5. The Android dex (classes.dex) �le, which is always included on the top
level of an Android package (.apk) can then be stored in a temporary
�le in the own context. Writing the zip input stream to a temporary lo-
cal �le is necessary for being able to open it as Java RandomAccessFile.

6. Following, the class �le names can be read from the dex �le according
to the description provided by the uno�cial Android dex �le documen-
tation. The �elds needed to �nd the class names are given in tables
6.2, 6.3 and 6.4. Attention needs to be paid to the fact that Android
stores bytes in little endian order, which is opposed to the standard
Java big endian byte order format. The method for converting a byte
array to an integer number is shown in listing 6.8.

7. Once all class names are collected, they can be loaded and re�ectively
scanned for CONTENT_URI �elds by means of �normal� Java re�ection.
To be discovered as CONTENT_URI �eld, all attributes described by the
Android online documentation have to hold, which are:

� The �eld has a static modi�er

� Its name equals CONTENT_URI

� Its �eld type is android.net.Uri

8. In order for a content URI to be matched to a particular content
provider, its value has to be read and the authority-part of the content
URI has to be matched to one of the providers of the application.

29http://code.google.com/android/reference/android/content/Context.html, last viewed
2008-05-15

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 127

9. Finally, the found CONTENT_URI can be added at the right place in the
content_uris table.

O�set Size Description
0x30 4 Number of strings in the string table
0x34 4 Absolute o�set of the string table
0x3C 4 Number of classes in the class list
0x40 4 Absolute o�set of the class list

Table 6.2: Android dex �le � File header

O�set Size Description
0x0 4 Absolute o�set of the string data
0x4 4 Length of the string (not including the null-terminator)

Table 6.3: Android dex �le � String table

O�set Size Description
0x0 4 Index of the name of the class in the string table

Table 6.4: Android dex �le � Class list

1 /**
2 * Helper function for converting a byte−array of size 4
3 * into a 32−bit integer .
4 * The bytes are assumed to be stored LITTLE−ENDIAN
5 * (Android Dalvik Style).
6 * Most signi�cant byte comes last − Least signi�cant �rst .
7 */
8 private int bytesToInt(byte[] bytes) {

9 //The 0xFF mask normalizes signed bytes (−127 to 128) to
10 //an unsigned range from 0 − 255 and converts them to short (integers)
11 int number = ((bytes[3] & 0xFF) << 24)

12 | ((bytes[2] & 0xFF) << 16)

13 | ((bytes[1] & 0xFF) << 8)

14 | (bytes[0] & 0xFF);

15

16 return number;

17 }

Listing 6.8: Android prototype � bytesToInt()

CHAPTER 6. MOBILE SEARCH CLIENT PROTOTYPES 128

6.5.5 Deployment

As at the time of writing of this thesis no handsets built on the Android
platform have yet been available, the various ways of deploying an application
on an Android phone in a real life scenario are not yet known.

The following steps are needed to manually deploy an application on the
emulator:

1. Compile the Java source �les with a normal Java compiler

2. Convert the Java class �les (.class) to a Dalvik executable (.dex) with
the dx tool

3. Create the necessary folder structures and create an Android package
(.apk) with the Android Asset Packaging Tool aapt

4. Install the package on the device with the Android Debug Bridge adb
tool. The command for installing a package on the device is adb

install <apk_package_name>.

Further information is provided in the tools section of the Android online
documentation30.

The above steps are only needed in case of manually deploying the appli-
cation on the emulator. The Android SDK also o�ers an Eclipse IDE plugin
which reduces the overhead of packaging and installation of the application
to simply pressing the IDE's �run` button.

A deployed package is uninstalled simply by removing it from the em-
ulator. This is done by accessing the device's shell with the adb shell

command31. All installed application packages are located in /data/app/.
The application that should be deleted can then be simply uninstalled by
removing it's Android pacakge with the standard Linux remove command
rm app_to_remove.apk.

30http://code.google.com/android/intro/tools.html, last viewed 2008-05-15
31The emulator has to be running for this command to succeed

Chapter 7

Summary & Conclusion

This paper covers a wide range of topics in the realm of mobile computing
and can basically be divided into two major parts. A theoretical part pro-
viding an introduction to mobile computing, smartphone operating systems
and development platforms, as well as mobile web applications and mobile
Service Oriented Architecture (SOA). And a practical part that shows two
distinct prototype implementations of a mobile enterprise search client.

The �rst part aims at providing an overview and introduction into the rapidly
changing �eld of today's mobile computing. It tries to answer question such
as �What are the most dominant mobile operating system and development
platforms?�, �Is there a platform or technology that targets many or maybe
even all mobile devices?�, �What is the status quo of today's mobile appli-
cation and web application development?�, �How could a mobile SOA appli-
cation be realized?�, �What possibilities of accessing the device context and
the locally stored data do the individual technologies o�er?�, etc.

One of the key �ndings of this part of the thesis is that the mobile market
is much less consolidated than that of desktop computers. The desktop op-
erating system market is clearly de�ned with only a few serious competitors
and an almost monopolistic dominance of the Microsoft Windows family of
operating systems. By contrast, the mobile operating system market is cur-
rently subject to rapid changes and many competitors are �ghting �ercely
for market shares in this promising area of computing. As of today, it is
extremly hard if not impossible to predict which platform will eventually
prevail. Although table 3.1 on page 14 about the market shares of smart-
phone operating systems suggests a clear market leadership of Symbian OS,
it has to be questioned if this is as clear as it seems at �rst sight. The
smartphone operating system market is regionally very diverse. According
to Symbian Ltd.'s smartphone market analysis of quarter 3 of 2007 [72], Sym-
bian OS had a market share of more than 80 % in Europe and Middle East,
while holding less than 10 % of the North American market. The presented

129

CHAPTER 7. SUMMARY & CONCLUSION 130

platforms are often subject to internal fragmentation. In case of Symbian
OS, there exist three di�erent GUI platforms. In case of mobile Linux one
can not talk about a single platform at all. It is rather split up in many
di�erent derivatives, of which most have di�erent application development
models. The mobile market is still in its infancy, which means that new
platforms may have big impacts on the overall market situation and market
shares are subject to much faster changes than in more traditional markets
like that of desktop computers. A good example for this is Apple's iPhone
that already gained a worldwide market share of 7 % in the last quarter of
2007 [11], although it had only be released in July of the same year.

Chapter 3 shows that Java ME is available on a large number of systems
and as a middle layer technology it possesses high potential for an operat-
ing system independent application development platform. Yet, especially
the Java ME platform is highly fragmented and o�ers signi�cantly di�erent
possibilities concerning mobile application development depending on the
particular device and the Java ME version.

A similar situation as with mobile operating systems can be seen in the
area of mobile browsers. While the desktop market again shows clear market
proportions, the mobile browser market is characterized by a high fragmen-
tation. As outlined in chapter 4, the dominant desktop browsers are not
found with an equal signi�cance on mobile devices.

While the mobile market is economically characterized by a �erce compe-
tition and a big divergency resulting out of it, mobile devices rapidly mature
and mobile technologies more and more converge with existing desktop tech-
nologies. This trend is apparent in the realm of mobile web applications.
Still some years ago mobile web sites had to be created with a total di�erent
set of tools than their desktop counterparts. New mobile browsers nowadays
(almost) support the same set of technologies as desktop browsers. This
tendency can also be observed in case of native development platforms. E.g.
Open Handset Alliance's Android platform o�ers a set of Java libraries that
can rather be compared to Java Standard Edition (SE) than to the Java
Micro Edition (ME). A similar trend can e.g. also be observed in case of
the iPhone SDK, which supports a special version of their Cocoa application
(development) environment also found on the desktop operating system Mac
OS X.

Another key aspect of the �st part of the paper was to highlight the
various levels of device access of the di�erent application development tech-
nologies. Gathering information from the device and its context is crucial to
many mobile applications. As presented, this is one of the major drawbacks
of mobile web applications. Just like their desktop counterparts, they are
strictly sandboxed and do not allow for an interaction with the hosting de-
vice. While this may change in the future as described in section 4.3.3, the
only possibility for taking full advantage of the device context at present is
to use a native programming language, or to some degree Java ME.

CHAPTER 7. SUMMARY & CONCLUSION 131

A further important �nding of the paper is that simple Web Service im-
plemenations on basis of HTTP are both possible with modern mobile web
technologies (AJAX) and native as well as Java ME applications. As chapter
5 explains, the REST approach possesses several advantages over the SOAP
paradigm when it comes to mobile computing. Most importantly the fewer
technical requirements and the less verbose and hence faster data transmis-
sion.

The second part tries to practically demonstrate some real implementations
of the technologies and trends discussed and explained in the preceding chap-
ters. The reason behind the choice of the two platforms lies with the idea
to explore the two opposite sides of today's mobile application development
spectrum, which ranges from web to native applications. The clear bene�ts
of the mobile AJAX client are its relative ease of implementation and the
unbeatable easy deployment. Its weakest point and at the same time the
ultimate strength of the native client is the access of the device data. With
the Android core libraries and application framework the application devel-
oper has all device data at hand. Any information ranging from Personal
Information Management (PIM) over mass storage card to sensing data like
Global Positioning System (GPS) data can be read from the device.

7.1 Prototype Enhancements & Future Work

The security issue is the most apparent de�ciency of both prototype appli-
cations. Both clients access the Mindbreeze Query Service in �Unrestricted
Public Access� mode, which would be impractical in a real world scenario.
Still both technologies possess the ingredients that are necessary to build a
secure distributed application. In the HTTP based scenario both operate
in, this is most notably SSL/TLS support. Possible approaches on how to
secure the clients are brie�y presented in section 5.4.2.

Another security threat not currently dealt with is the one of �loss and
theft� of the device.

As work on the prototypes will continue, the security issues will of course
be expanded on in the future.

7.1.1 Mobile AJAX Web Client

The appearence of the mobile web client as presented in this paper is very
much tailored for the iPhone. The underlying technologies used to commu-
nicate with the Mindbreeze Query Interface on the other hand are standards
based and should work with little to no modi�cations involved on any other
AJAX enabled mobile browser. Hence adapting the application for other
mobile browsers would be the next logical step.

CHAPTER 7. SUMMARY & CONCLUSION 132

7.1.2 Native Android Client

Since the native Android client technologically o�ers more possibilties than
the iPhone web client, it also has more potential for further advancements.
Amongst others they could be:

� The current Android search client does not have a re�nements panel.
The underlying SearchRequest object already has re�nements sup-
port. Hence re�nement options could be implemented by adding the
necessary GUI elements. Likewise the visual appearance could further
be improved by replacing the search button with whatever mechanism
�ts best for a particular type of device.

� Currently data is only read from the content providers. A further en-
hancement could be to write data into them. An imaginable scenario
could e.g. be to insert all of a users publicly available contact infor-
mation into her Android contacts content provider. This way a user
would always have all contacts on her mobile phone. Furthermore it
would limit the dependency from the mobile device and could facilitate
migration to other Android based phones.

� Android also o�ers other ways of storing data aside from content provi-
ders. Most importantly they comprise local �les that have been de-
clared to be publicly read- or writeable by other applications, as well
as data stored on the mass storage card (SD-card). A futurely en-
hanced client could also consider this data in the search.

� An application exposing a content provider is not forced to notify
the system about changes to the provider, even though this is recom-
mended by the Android online documentation. Hence a more robust
version of the prototype could periodically check the last_full_query
time-stamp to re-query providers that have not been considered for a
longer time.

� Another improvement could be to let the user specify the time intervall
at which the providers are queried. Ideally the user could choose be-
tween an intervall (like currently implemented) and a �xed time (e.g.
every day at 03:00 a.m.).

� The Android SDK includes optional APIs for location-based services
for devices that are equipped with the corresponding hardware. The
data from these APIs could be used to limit or to specially sort a search
response with regard to the current position of a user.

� The application could additionally implement the SEARCH_ACTION ac-
tivity action. This would make the Mindbreeze search client the default
search application on the device.

Bibliography

[1] Allamaraju, Subrahmanyam, Ronald Ashri, Chad Darby,
Robert Flenner, Tracie Karsjensand, Mark Kerzner, Alex
Krotov, Alex Linde, Jim MacIntosh, James McGovern, Thor
Mirchandani, Bryan Plaster, Don Reamy, Dr P G Sarang

and Dave Writz: Professional Java E-Commerce. WROX Press Ltd.,
2001.

[2] Allin, Jonathan: Wireless Java for Symbian Devices. Symbian Press
(WILEY), 2001.

[3] Apple Developer Connection: Dynamic HTML and XML: The
XMLHttpRequest Object, JUN 2005. URL, http://developer.apple.com/
internet/webcontent/xmlhttpreq.html, last viewed 2008-02-25.

[4] Apple Developer Connection: Know What Safari Supports
on iPhone, 2007. URL, http://developer.apple.com/iphone/devcenter/
designingcontent.html, last viewed 2008-02-26.

[5] Apple Inc.: Cocoa Fundamentals Guide. MAR 2008. URL,
http://developer.apple.com/iphone/library/documentation/Cocoa/
Conceptual/CocoaFundamentals/CocoaFundamentals.pdf, last viewed
2008-04-03.

[6] Apple Inc.: iPhone OS Overview. 2008. URL, http://developer.apple.
com/iphone/gettingstarted/docs/iphoneosoverview.action, last viewed
2008-04-03.

[7] Apple Inc.: iPhone OS Programming Guide. MAR 2008. URL,
https://developer.apple.com/iphone/library/documentation/iPhone/
Conceptual/iPhoneOSProgrammingGuide/iPhoneOSProgrammingGuide.
pdf, last viewed 2008-04-04.

[8] Apple Inc.: Safari Web Content Guide for iPhone. FEB 2008.
URL, http://developer.apple.com/documentation/AppleApplications/
Reference/SafariWebContent/SafariWebContent.pdf, last viewed 2008-
04-04.

133

BIBLIOGRAPHY 134

[9] Bersvendsen, Arve and Ian Hickson: Opera Platform DOM In-
terface Speci�cation 1.1, APR 2005. URL, http://oxine.opera.com/
documentation/dom-interface.html, last viewed 2008-05-30.

[10] Byous, Jon: Java Technology: The Early Years. Website, APR 2005.
URL, http://java.sun.com/features/1998/05/birthday.html, last viewed
2007-12-26.

[11] Canalys: Canalys research release 2008/021, FEB 2008. URL, http:
//www.canalys.com/pr/2008/r2008021.pdf, last viewed 2008-05-28.

[12] Carlson, Brian, Uming Ko and Bill Krenik: The Repeal of
Moore's Law? DEC 2005. URL, http://focus.ti.com/general/docs/wtbu/
wtbuviewnewsletter.tsp?templateId=6123&navigationId=11952&path=
templatedata/cm/general/data/wtbmiddl/newsletter/num15_smartre�ex,
last viewed 2008-04-24.

[13] Carney, Bruce: Evolving to Symbian OS v9, 2005. URL,
http://developer.symbian.com/main/downloads/papers/evolving_toV9/
evolving_toV9.pdf, last viewed 2008-01-31.

[14] Chinthaka, Eran: Enable REST with Web services, Part 1: REST
and Web services in WSDL 2.0. MAY 2007. URL, http://www.ibm.com/
developerworks/webservices/library/ws-rest1/, last viewed 2008-03-24.

[15] Chu, HoJin: See the Power of Symbian OS (Introduction and
Overview), AUG 2007. URL, www.software.or.kr/ICSFiles/a�eld�le/
2007/08/30/See_the_Power_of_Symbian_OS_KIPA.pdf, last viewed
2008-01-31.

[16] Costello, Roger L.: Building Web Services the REST Way. URL,
http://www.xfront.com/REST-Web-Services.html, last viewed 2008-03-
24.

[17] Erl, Thomas: Service-Oriented Architecture: A Field Guide to In-
tegrating XML and Web Services. Prentice Hall International (6. Mai
2004), 2004.

[18] Giguere, Eric: Service-Oriented Architecture and Java ME. OCT
2006. URL, http://developers.sun.com/mobility/midp/ttips/soaintro/,
last viewed 2008-03-11.

[19] Grey, Kevin: AJAX on IE Mobile. NOV 2005. URL, http://blogs.
msdn.com/iemobile/archive/2005/11/15/493200.aspx, last viewed 2008-
02-28.

[20] Hansen, Mark: Basic SOA Using REST. MAY
2007. URL, http://www.ddj.com/java/199300123;jsessionid=

BIBLIOGRAPHY 135

JTR1XT5I2YZNMQSNDLRSKHSCJUNN2JVN?_requestid=9156, last
viewed 2008-03-24.

[21] Harakawa, Takuya and Dr. Tomihisa Kamada: Embedded
AJAX, 2007. URL, http://www.access-company.com/PDF/NetFront/
Ajax%20white%20paper.pdf, last viewed 2008-02-26.

[22] Jakl, Andreas: Symbian OS Overview, NOV 2007.

[23] Jipping, Michael J.: Smartphone Operating System Concepts with
Symbian OS. Symbian Press (WILEY), 2007.

[24] Jones, Robert: Creating Web Content for Mobile Phone Browsers,
Part 1, JUN 2004. URL, http://www.oreillynet.com/pub/a/wireless/
2004/02/06/mobile_browsing.html, last viewed 2008-02-14.

[25] Kanellos, Michael: Big changes ahead for micro-
processors. NOV 2001. URL, http://www.news.com/
Big-changes-ahead-for-microprocessors/2009-1001_3-275823.html,
last viewed 2008-04-24.

[26] Knudsen, Jonathan: MIDP Application Security 2: Understanding
SSL and TLS. OCT 2002. URL, http://developers.sun.com/mobility/
midp/articles/security2/, last viewed 2007-12-28.

[27] Kreft, Klaus and Angelika Langer: Java Multithread Support �
Threadpools. MAY 2005. URL, http://www.angelikalanger.com/Articles/
JavaSpektrum/20.ThreadPools/20.ThreadPools.html, last viewed 2008-
05-12.

[28] LiMo Foundation: LiMo Foundation Platform Architecture - White
Paper Version 1.0. JAN 2007. URL, http://www.limofoundation.org/
images/stories/pdf/limo_platform_arch.pdf, last viewed 2008-04-05.

[29] LiMo Foundation: LiMo Foundation - Introduction, Overview &
Market Positioning. FEB 2008. URL, http://www.limofoundation.org/
images/stories/pdf/limo-foundation-overview-feb2008.pdf, last viewed
2008-04-05.

[30] Mahmoud, Qusay H.: Service-Oriented Architecture (SOA) and
Web Services: The Road to Enterprise Application Integration (EAI).
APR 2005. URL, http://java.sun.com/developer/technicalArticles/
WebServices/soa/, last viewed 2008-03-11.

[31] Makofsky, Steve: Pocket PC Network Programming. Addison-
Wesley Professional, 2003.

BIBLIOGRAPHY 136

[32] Malone, Michael S.: Moore's Second Law. APR 2004. URL, http://
www.wired.com/wired/archive/12.04/start.html?pg=2, last viewed 2008-
04-24.

[33] McCarthy, Philip: Ajax for Java developers: Build dynamic Java
applications. SEP 2005. URL, http://www.ibm.com/developerworks/
library/j-ajax1/, last viewed 2008-02-25.

[34] McLaughlin, Brett: Ajax: A New Approach to Web Applications.
FEB 2005. URL, http://adaptivepath.com/ideas/essays/archives/000385.
php, last viewed 2008-02-25.

[35] McLaughlin, Brett: Mastering Ajax, Part 1: Introduction to
Ajax. DEC 2005. URL, http://www.ibm.com/developerworks/web/
library/wa-ajaxintro1.html, last viewed 2008-02-25.

[36] McLaughlin, Brett: Mastering Ajax, Part 2: Make asynchronous
requests with JavaScript and Ajax. JAN 2006. URL, http://
www.ibm.com/developerworks/web/library/wa-ajaxintro2/index.html, last
viewed 2008-02-25.

[37] Microsoft Corporation: Architectural Overview of Windows
Mobile Infrastructure Components (Windows Mobile 5.0 and 6-powered
devices), MAY 2007. URL, http://download.microsoft.com/download/
c/b/d/cbdc18d1-1a01-4736-a557-08474ec73443/Windows_Mobile_
Architecture_Overview.pdf, last viewed 2008-01-18.

[38] Mills, Chris: JavaScript support in Opera Mini 4. OCT 2007. URL,
http://dev.opera.com/articles/view/javascript-support-in-opera-mini-4/,
last viewed 2008-02-28.

[39] Mindbreeze Software GmbH: Developers Guide Mindbreeze Enter-
prise Search 3.0 SDK, 2007.

[40] Monson-Haefel, Richard: J2EE Web Services. Addison-Wesley
Professional; 1st edition (October 17, 2003), 2003.

[41] Nokia Corporation: maemo 4 Quick Start Guide. OCT 2007. URL,
http://maemo4beginners.garage.maemo.org/maemo-quick-start-guide.
pdf, last viewed 2008-04-05.

[42] OpenAjax Alliance: Mobile Device APIs. Website, MAY 2008.
URL, http://www.openajax.org/member/wiki/Mobile_Device_APIs, last
viewed last viewed 2008-05-30.

[43] Opera Software ASA: The Opera Platform. URL, http://www.
opera.com/products/mobile/brochures/OperaPlatform.pdf, last viewed
last viewed 2008-05-30.

BIBLIOGRAPHY 137

[44] Ortiz, C. Enrique: Understanding the Web Services Subset API for
Java ME. MAR 2006. URL, http://developers.sun.com/mobility/midp/
articles/webservices/, last viewed 2008-03-27.

[45] PalmSource, Inc: Introduction to Palm OS Developer Suite,
2004. URL, http://www.access-company.com/developers/documents/
docs/dev_suite/PalmOSDevSuite/ToolsTOC.html, last viewed 2008-01-
18.

[46] Passani, Luca: WAP Forum - Wireless Application Protocol WAP
2.0 Technical White Paper. URL, http://developer.openwave.com/dvl/
support/documentation/guides_and_references/xhtml-mp_style_guide/
index.htm, last viewed 2008-02-14.

[47] Pollington, David: Web Runtimes � evolving beyond the browser,
FEB 2008. URL, http://mobilemonday.org.uk/Vodafone\%20MoMo\
%20Feb\%204.ppt, last viewed 2008-05-30.

[48] Prescod, Paul: REST and the Real World. FEB 2002. URL, http://
webservices.xml.com/pub/a/ws/2002/02/20/rest.html, last viewed 2008-
03-24.

[49] Research In Motion Limited: BlackBerry and Java, MAR
2002. URL, http://www.blackberry.net/developers/javaknowledge/
presentations/download/BlackBerry_JDE.pdf, last viewed 2008-01-11.

[50] Research In Motion Limited: BlackBerry Java Development Envi-
ronment - BlackBerry Application Developer Guide Volume 1: Funda-
mentals, SEP 2006.

[51] Research In Motion Limited: Developing Applications for Black-
Berry Devices: An Introduction for Mobile Application Developers, DEC
2006.

[52] Research In Motion Limited: Developing Mobile Applications - De-
sign Principles for BlackBerry Browser Applications, APR 2006. URL,
http://www.blackberry.com/knowledgecenterpublic/livelink.exe/Design_
Principles_for_BlackBerry_Applications.pdf?func=doc.Fetch\&nodeId=
1206298\&docTitle=Design+Principles+for+BlackBerry+Applications,
last viewed 2008-01-11.

[53] Research In Motion Limited: Introduction to the Plazmic Content
Developer's Kit for Rich Media Applications, 2006.

[54] Research In Motion Limited: Research In Motion, 2008.
URL, http://www.blackberry.com/select/get_the_facts/pdfs/rim/RIM_
Presentation_Q1_Fiscal_2008.ppt, last viewed 2008-01-11.

BIBLIOGRAPHY 138

[55] Research In Motion Limited: Research In Motion - History,
2008. URL, http://www.blackberry.com/select/get_the_facts/pdfs/rim/
rim_history.pdf, last viewed 2008-01-11.

[56] Richardson, Leonard and Sam Ruby: RESTful Web Services.
O'Reilly Media, Inc. (May 8, 2007), 2007.

[57] Rui, Shu Fang: Designing mobile Web services. JAN 2006. URL, http:
//www.ibm.com/developerworks/wireless/library/wi-websvc/, last viewed
2008-05-23.

[58] Schroepfer, Mike: Mozilla and Mobile. OCT 2007. URL,
http://weblogs.mozillazine.org/schrep/archives/2007/10/mozilla_and_
mobile.html, last viewed 2008-02-29.

[59] Shearer, Findlay: Power management in mobile devices � A view of
energy Conservation. APR 2008. URL, http://www.planetanalog.com/
features/showArticle.jhtml?articleID=207100756, last viewed 2008-04-24.

[60] Smidt Hansen, Soren: .Net Compact Framework Overview, NOV
2002. URL, http://www.daimi.au.dk/~ups/DOPC/slides/12_compact.
ppt, last viewed 2008-01-19.

[61] Souders, Steve: High Performance Web Sites. 14 Steps to Faster-
Loading Web Sites: Essential Knowledge for Front-end Engineers.
O'Reilly Media, Inc. (September 11, 2007), SEP 2007.

[62] Sun Microsystems, Inc.: Java ME Platform Overview. Web-
site. URL, http://java.sun.com/javame/technology/index.jsp, last viewed
2007-12-26.

[63] Sun Microsystems, Inc.: Connected, Limited Device Con�guration
- Speci�cation Version 1.0a, MAY 2000. PDF, CLDCspec10a.pdf.

[64] Sun Microsystems, Inc.: J2ME Building Blocks for Mobile Devices
- White Paper on KVM and the Connected, Limited Device Con�gura-
tion (CLDC), MAY 2000. URL, http://java.sun.com/products/cldc/wp/
KVMwp.pdf, last viewed 2007-12-28.

[65] Sun Microsystems, Inc.: Mobile Information Decvice Pro�le Version
2.0, NOV 2002. PDF, midp-2_0-fr-spec.pdf.

[66] Sun Microsystems, Inc.: Connected, Limited Device Con�guration -
Speci�cation Version 1.1, MAR 2003. PDF, CLDCSpeci�cation1.1.pdf.

[67] Sun Microsystems, Inc.: Java Technology for the Wireless Industry
(JSR-185) - Road Map 1 De�nition, JAN 2003. URL, http://java.sun.
com/j2me/docs/j2me_wireless_industry.pdf, last viewed 2007-12-29.

BIBLIOGRAPHY 139

[68] Sun Microsystems, Inc.: CLDC HotSpot Implementation Vir-
tual Machine, FEB 2005. URL, http://java.sun.com/j2me/docs/pdf/
CLDC-HI_whitepaper-February_2005.pdf, last viewed 2007-12-26.

[69] Sun Microsystems, Inc.: Java ME Technology At-A-Glance,
MAY 2006. URL, http://www.sun.com/aboutsun/media/presskits/
javaone2006/JavaMEtechnology_aag.pdf, last viewed 2008-05-28.

[70] Sun Microsystems, Inc.: Mobile Service Architecture Speci�cation -
Version 1.00, SEP 2006. PDF, JSR 248 Speci�cation v1.00 (FR).pdf.

[71] Sun Microsystems, Inc.: Sun Mobile Device Technology - Intro-
duction to Mobility Java Technology. Website, DEC 2007. URL,
http://developers.sun.com/mobility/getstart/, last viewed 2007-12-26.

[72] Symbian Ltd.: Symbian Market Round-Up � Issue 2, 2007, NOV
2007. URL, http://developer.symbian.com/main/getstarted/newsletter/
MarketRoundUp/SymbianMarketRound-UpIssue2Oct07FINAL.pdf, last
viewed 2008-01-30.

[73] Theurer, Tenni and Wayne Shea: Performance Research, Part 5:
iPhone Cacheability - Making it Stick. FEB 2008. URL, http://yuiblog.
com/blog/2008/02/06/iphone-cacheability/, last viewed 2008-02-27.

[74] Tilkov, Stefan: Interview with Sanjiva Weerawarana: Debunking
REST/WS-* Myths. FEB 2007. URL, http://www.infoq.com/articles/
sanjiva-rest-myths, last viewed 2008-03-24.

[75] Tyagi, Sameer: RESTful Web Services. AUG 2006. URL, http://java.
sun.com/developer/technicalArticles/WebServices/restful/, last viewed
2008-03-24.

[76] WAP Forum: Wireless Application Protocol - Wireless
Telephony Application Interface Speci�cation, NOV 1999.
URL, polylab.sfu.ca/spacesystems/teach/wireless/wap/documents/
SPEC-WTAI-19991108.pdf, last viewed 2008-02-14.

[77] WAP Forum: WAP Forum - Wireless Application Protocol White Pa-
per, JUN 2000. URL, www.wapforum.org/what/WAP_white_pages.pdf,
last viewed 2008-02-14.

[78] WAP Forum: WAP CSS Speci�cation, OCT 2001. URL, http://www.
wapforum.org/tech/documents/WAP-239-WCSS-20011026-a.pdf, last
viewed 2008-02-16.

[79] WAP Forum: XHTML Mobile Pro�le, OCT 2001.
URL, http://www.openmobilealliance.org/tech/a�liates/wap/
wap-277-xhtmlmp-20011029-a.pdf, last viewed 2008-02-15.

BIBLIOGRAPHY 140

[80] WAP Forum: WAP Forum - Wireless Application Protocol WAP 2.0
Technical White Paper, JAN 2002. URL, www.wapforum.org/what/
WAPWhite_Paper1.pdf, last viewed 2008-02-14.

[81] Weerawarana, Sanjiva, Francisco Curbera, Frank Leymann,
Tony Storey and Donald F. Ferguson: Web Services Platform
Architecture. Prentice Hall PTR (April 1, 2005), 2005.

[82] Wilson, Greg, Jean Ostrem and Christopher Bey: Palm
OS Programmer's Companion Volume1, NOV 2004. URL,
http://www.access-company.com/developers/documents/docs/palmos/
PalmOSCompanion/CompanionTOC.html, last viewed 2008-01-17.

[83] Wischy, Markus Alexander: Erste Schritte mit dem .NET Com-
pact Framework. NOV 2004. URL, http://msdn2.microsoft.com/de-de/
library/bb978945.aspx, last viewed 2008-03-27.

[84] World Wide Web Consortium: Mobile Web Best Practices 1.0,
NOV 2006. URL, http://www.w3.org/TR/mobile-bp/, last viewed 2008-
02-26.

[85] World Wide Web Consortium: The XMLHttpRequest Object, OCT
2007. URL, http://www.w3.org/TR/XMLHttpRequest/, last viewed
2008-02-26.

[86] Zakas, Nicholas C., Jeremy McPeak and Joe Fawcett: Profes-
sional Ajax, 2nd Edition. WROX Press Ltd., MAR 2007.

[87] Zheng, Pei and Lionel M. Ni: SMART PHONE & NEXT GENER-
ATION MOBILE COMPUTING. Morgan Kaufmann, 2006.

Curriculum Vitae
Christian P. Praher

Zur Person

Name Christian Paul Praher

Anschrift Blütenstraße 23/11/68, A-4040 Linz

Telefon +43 664 / 4500 433 (tele.ring)

E-Mail chris.praher@gmx.net

Geburtsdatum 15. Februar 1982 (Linz)

Familienstand Ledig

Staatsbürgerschaft Österreich

Führerscheinklassen A, B

Ausbildung

Grundschule
1988 - 1992 Volksschule Aigen-Schlägl

Unterstufe
1992 - 1996 Bundesgynmasium Rohrbach

Oberstufe
1996 - 2001 Handelsakademie Rohrbach, abgeschlossen mit Matura

Präsenzdienst
2001 - 2002 Zivildienst Bezirksaltenheim Hart-Leonding

Studium
2002 - 2006 Bakkalaureatsstudium Informatik an der Johannes Kepler

Universität Linz, abgeschlossen mit Bakk.tech.
Seit 2006 Masterstudium Informatik an der Johannes Kepler Univer-

sität Linz
2/2007 - 6/2007 Auslandssemester an der Université de Marne-La-Vallée

(Paris/Frankreich)

141

Berufliche Aktivitäten

1999 - 2008
Praher KEG Realisierung von Projektarbeiten zusammen mit meinem

Bruder, DI Jakob Praher, vor allem im Bereich Webappli-
kationen (JavaEE) und Netzwerke.

2002 - 2008
SBX-Mathematik Entwicklung eines E-Learning Frameworks und entspre-

chenden Beispielen auf Basis von Microsoft Active Server
Pages für die Schulbuch eXtra Inhalte (SBX) der Bücher

”Mathematik I - Mathematik V“ des Trauner Verlages.

2004 - 2005
IT-Math Implementierung von Java-Applets für die Visualisierung

mathematischer Algorithmen im Rahmen des Projektes

”IT-Math“ am Institut für Informationsverarbeitung und
Mikroprozessortechnik (FIM) der Johannes Kepler Uni-
versität Linz.

Seit 4/2008
FIM Wissenschaftlicher Mitarbeiter ohne Diplom am Institut

für Informationsverarbeitung und Mikroprozessortechnik
(FIM) der Johannes Kepler Universität Linz.

142

Eidesstattliche Erklärung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbst-
ständig und ohne fremde Hilfe verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und die aus anderen Quellen entnommenen
Stellen als solche gekennzeichnet habe.

Des weiteren versichere ich, dass ich diese Masterarbeit weder im In- noch
im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt habe.

Linz, am 4. Juni 2008

Christian P. Praher

143

Messbox zur Druckkontrolle

� Druckgröÿe kontrollieren! �

Breite = 100 mm
Höhe = 50 mm

� Diese Seite nach dem Druck entfernen! �

144

