

Mag. iur. Dr. techn. Michael Sonntag

Cryptography

SSL, Certificates, VPN

Institute for Information Processing and Microprocessor Technology (FIM) Johannes Kepler University Linz, Austria

E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm

© Michael Sonntag 2004

E

Questions?

Please ask immediately!

© Michael Sonntag 2004

Cryptography

3

- General aspects
 - → Why and where to use
- Technical aspects
 - → Algorithms and their strength, required environment
- Certificates
 - → Content, PKI, revocation
- SSL

F

- → Modes, protocol
- Legal aspects of cryptography
- VPNs
 - \rightarrow PPTP and IPSec

Why cryptography?

- Security is a very important aspects, especially if money (or equivalents) is contained in transactions
- E-Business is usually "business at distance"
 - → You cannot see your partner
 - → You don't know your partner very well
 - You can't know who is in the middle of your connection
 - → ...

Security is needed!

- Technical aspect of security is cryptography
 - → Encrypting data against disclosure, modification
 - \rightarrow Signing data against modifications, repudiation
- Other aspects of security are also needed
 - » E.g.: Do you know what your employees actually do with data?
 - → But not discussed here!

Application areas

- Storing data encrypted
 - → Even access will not lead to disclosure » Example: File encryption programs
- Transmitting data securely
 - → Encrypted transmission prevents eavesdropping » Example: SSL
- Identifying your partner
 - Preventing man-in-the-middle attacks » Example: SSL
- Proof of identity
 - → Avoiding impersonation
 - » Example: Digital signatures ("Bürgerkarte")

F[∐][™]

Software components

- Several different classes of algorithms required:
 - → Hash functions: Handling the whole document takes too long » Drawback: Content could be substituted!
 - → Encryption/Decryption: The same algorithm for symmetric but different for asymmetric encryption/signatures
 - → Signature: Combining a document with a private key
 - → Verification: Checking a document + signature with public key
 - Key agreement: Creating a shared secret
 » Even if both parties do not have a shared secret to start with!
 - \rightarrow Key generation: Creating secure keys
 - » Requires e.g. secure random generators
 - » From passwords: Creating keys suitable for algorithms
- For each class several/many algorithms exist
 - → Some good, some bad (=broken, erroneous, ...)

[F]

- Symmetric:
 - → DES, 3DES: 54 Bit; DES is now insecure; 3DES sufficient for commercial use (frequent key changes recommended)
- Asymmetric:
 - → RSA: Classic/first asymmetric cipher (rather slow) » Keysize arbitrarily (>=1024 recommended); no longer patented!
 - → AES (=Rijndael): New "standard" algorithm; different keysizes
 - → DSA: Only signatures supported, no encryption possible
- Hash:
 - \rightarrow SHA-1, RIPEMD-160: 160 Bit
 - → MD5: 128 Bit (not recommended any more)
- Other:
 - > Diffie-Hellman: Key agreement without previous knowledge
 - » Generates a shared secret key

Strength of algorithms for the future

- Key length are not static:
 - → Faster computers
 - → Advances in mathematics
 - → New attacks (most dangerous of all!)
- Decicision for length must incorporate
 - Time required for calculation
 - → Degree of security (=amount of money required for breaking)
 - Time the calculated value should remain secure!
 - » Very often ignored!
 - » Guideline: For the next 20 years (=2024)
 - Symmetric: ≈ 89 Bit
 - Asymmetric: RSA, ...: ≈ 2113 Bit; DSA: ≈ 157 Bit
 - Corresponds to a budget for an attack in 1 day of \approx 732 million US\$

Environment components

- Encryption algorithms are not all there is to be secure
- Many other elements must be taken care of:
 - → Technical "surroundings":
 - » Secure viewer: Showing exactly the content to sign and not something different
 - » Secure transmission of codes/PINs from chipcards/terminals to the CPU actually calculating signatures
 - » Physical access control/restrictions?
 - \rightarrow Organizational issues:
 - » Who knows the encryption keys and where are thes stored?
 - » How to get at them in case of illness/dismissal?
 - » Who is allowed to do what? Does the equipment support these different security levels?
 - » Securing keys/certificates etc. against loss

Certificates

- Public keys must be connected to certain individual/device
 - → Everyone can use/create a key, but how do you know that the person holding the private key is actually "Donald Duck" or a certain person using this pseudonym?
- Certificates connect the public key to a name
 - → As public key "match" the private keys, they are assigned too
- Certificates can contain other information
 - → E.g. server certificates can contain E-Mail of administrator
 - Person certificates can contain restrictions or special permissions/empowerments
- Certificates are signed too so nobody can tamper with them
 - Chicken-egg problem: Who signed the certificate?
 » Pre-shared "master" certificate or Public Key Infrastructure (PKI)

F1-

Certificate content

- Currently only certificates of type X.509 are of importance
 - → Several versions available
 - → Standard is not too clear
 - » Certificates from one vendor might be incompatible with those from another vendor or with some software
 - » Special problem: What data, which form, which "schema"

• No problem:

- \rightarrow Public key, including algorithm
- \rightarrow Issuer: Who "guarantees" for the association key \leftrightarrow name
- \rightarrow Version, serial number, validity, unique IDs
- Problems:
 - → Subject (=associated name): Different elements (E-Mail, additional/missing parts, ...)
 - \rightarrow Extensions: Key usage, CRL distribution, contraints, etc.

Michael Sonntag

F

Public Key Infrastructure (PKI)

- Who guarantees, that the certificate is "correct"?
 - » I.e. that the key belogs to exactly the identified person and not e.g. some imposter
 - → The signature of the certificate
 - → Who guarantees, the this signature is "correct"? »...
- The "top-level" certificate is self-signed
 - \rightarrow Key used for signing is the one for the public key contained
 - → This certificate you "just have to trust" » Obtained from a secure source, verified, …
 - → Can also be "cross-certified": One top-level certificate is used to sign another top-level certificate and in reverse
 » Good for few CAs (otherwisen: O(N²)!)

Michael Sonntag

Cryptography

- Sometimes certificates must be "removed", e.g. when
 - → some attributes are incorrect (name/profession changes)
 - → private key is disclosed
 - \rightarrow algorithm is now insecure
 - \rightarrow no longer used (e.g. server certificates)
- although they are still valid (looked at them alone)
- Solution: Revocation lists
 - → Must (should) be consulted on each verification of a signature
 - → Must happen fast e.g. on lost keycards » Legal requirement: Maximum of 3 hours
 - → Contains a timestamp
 - » Signature before the revocation must remain valid indefinitely!
- Technical standards/infrastructure still lacking for this!

F

Certificates and digital signatures

- Creating/Verifying a digital signature:
 - → Encrypt values (see below) with private part of key
 - → Send document and/or encrypted value to recipient
 - → Recipient obtains certificate of signer (however) and checks it
 - → Recipient decrypts value with public part of key and checks it
- Two kinds of signatures possible
 - → "Internal": The document is "encrypted" with the private key
 - » Verification=Decryption; reading the document takes long
 - "Avalanche property" of good (!) algorithms: Minimal modifications lead to complete gibberish on decryption
 - → "Extneral": A Hash value is calculated and then signed
 - » Verification=Comparing the decrypted hash with the (newly) calculated one from the plaintext document; quite fast
 - Possible problem: Finding a similar text with same hash value
 - Quality of hash algorithm is therefore very important here!

Encryption for the WWW

- When transmitting sensitive information on the Web, the communication should be encrypted
 - → Examples: credit card numbers, company-internal forms, ...
- Currently one method is widely used: SSL
 - → Secure Socket layer: A general solution for encrypted TCP traffic; most common use with http (⇒https)

• SSL provides:

- Encrypted communication: Eavesdropping almost impossible
 » Also depends on the actual algorithm used (national restrictions!)
 » Uses symmetric cryptography for speed; numbers against replay
 » Asymmetric cryptography used for key exchange
- → Mutual authentication supported
 - » Uses asymmetric cryptography and certificates
- → Configuratiojn very important (algorithms, cert. storage, ...)

Security for the WWW

- PGP: Pretty Good Privacy
- SSL: Secure Socket Layer
 - → The whole communication is secured
- S-HTTP: HTTP + security extensions
 - → Single messages are secured
- IPSec: IP Security
 - Every communication is encrypted and/or authenticated

Authentication modes

- Either the server or both the server and the client can be authenticated
 - → For the WWW this means, authenticating only the webbrowser is not possible!
 - \rightarrow Commonly, only the server is authenticated
- Authentication requires a certificate
 - \rightarrow Most browsers come with a list of top-level CA certificates
 - Unknown certificates can be imported or accepted ad-hoc » Large part of CA business is based on this: No questions!
 - → For smaller companies: Create their own certificate and distribute it to partners
 - » For public: Present it on website (but is this really secure?)
 - → Webserver must have access to private key: Must be secured very well within the system!

SSL: The protocol (2)

- Client-/ServerHello: Contains a random number and encryption/compression capabilities
 - → Random number: Prevents replay attacks
- S.-Certificate: Certificate including chain up to top-level CA
- ServerKeyExchange: If the server has no certificate or it cannot be used for encryption
 - Commonly uses Diffie-Hellman Key Exchange protocol
 - Signed by certificate to avoid man-in-the-middle attacks
- CertificateRequest: Non-anonymous server can request a client certificate
 - → Contains list of certificate types understood
 - \rightarrow Contains list of DNs of accepteable CAs
 - » DN = Distinguished Name; format for name in X.509 certificates

- ServerHelloDone: Hand-off to tell client that this is all
- ClientCertificate: Certificate of the client or warning that no (matching) one is available
 - → Server cann accept without certificate or terminate protocol
- ClientKeyExchange: Client part of key exchange protocol
 - Always required!
- CertificateVerify: Signed digest of messages
 - → To prove the knowledge of the private key for the certificate
- Finished: Encrypted & signed with (new) negotiated values
 - → Content may be sent immediately (no wait for reply required)
- ChangeCipherSpec: Switch to encryption
 - \rightarrow This message is still handled according to the old algorithms!

F

What you (don't) get!

- The server is the one specified in the certificate
 - → Not necessarily the actual webserver; this is verified by the browser, however!
 - » Difficulties for servers having different Domain Names
- Client knows the private key for its certificate (if provided)
- Revocation of certificates was checked
 - \rightarrow Depends on browser; not in protocol
- Encryption, authentication, integrity, non-repudiation, no manipulation, no replay
- What you don't get:
 - → Additional certificate content (e.g. attributes) often ignored
 - \rightarrow Hiding who talks to whom

Michael Sonntag

Alternatives: Shared keys

- Only suitable for very small group of partners communicating
 - → See VPN later; especially VPN tunnels!
- Keys must be exchanged over a trusted channel
 - \rightarrow I.e. NOT over the channel used for communicating!
- Protocols must use "Challenge-Response": The key may never be sent in cleartext!

» Before you don't know who is on the other side

- \rightarrow Common way: random value sent, hashed with secret key, sent back, compared to expected response
 - » No eavesdropper/man-in-the-middle can retrieve the key from it
- Not possible with SSL!
- Advantage: Usually very simple to manage
 - \rightarrow Agree on a keyphrase, telephone call \Rightarrow works!
 - » No additional infrastructure needed (PKI, CRL, etc.)

Michael Sonntag

Alternatives: Web of trust

- Similar to PKI, but distributed model
 - → Signing someone others keys to certify, that the association is correct; diverse servers for storing keys and signatures
- Based on transitivity of trust (=the signatures):
 - → A trusts B, B trusts C, C trusts D \Rightarrow A trusts D
- Not possible with SSL!
 - → Uses different certificate format
 - → Currently mainly used for E-Mails
- Advantage: No single point of failure
- Problem: No guaranteed decision
 - → Perhaps just no trusted connection exists; still valid & correct!
 - \rightarrow CA are possible, but not necessary

"Official" certificates: Advantages / Disadvantages

- + Identity of person/company verified accurately » More trust than a self-signed certificate
- + No warning messages for (modern!) browsers
- + Interoperability with many browsers » Creating a "good" certificate is not easy!
- + Key length issues, etc. are taken care of
- Provides reliable servers and CRL services
- Costs money (and expires regularly, requiring a new one!)
- May take some time to obtain (depending on CA/location)
- Guarantees for content are small or non-existing
- Result:
 - → Public website: Indispensable (browser warning)
 - → Private/internal use: Very few reasons
 - » Except: Large companies, where managing secure and

Michael Sonntag

F

e 🛛 🖉

"Official" certificates: Obtaining one

Cryptography

26

- Fill in form for certificate
 - → Creates a "Certificate Signing Request" (CSR) » Contains the certificate data, but not the private key!
- Pay the price
- CA verifies the content
 - Usually through notarized/official documents
 » Perhaps also personally (depending on application)
- CA creates the certificate
 - \rightarrow Signed by its own private key
- CA makes the certificate available
 - → To the customer
 - Usually also in the directory
 » Everyone can download it

Legal aspects: Enhanced protection

- Protected communication enjois some legal benefits:
- Https:
 - \rightarrow Credit card information may be sent over it
 - » Otherwise this is a breach of confidence by default!
 - → Adequate protection of privacy » E.g. for medical information
 - → Reduced liability: Not using SSL might be negligence
 - \rightarrow (Limited) liability of CA for wrong information
- E<mark>-</mark>Mail:
 - → Depending on the certificate this might be equal to a full manual signature
 - → Now protected by "privacy of correspondence" » Other E-Mail is like postcards and therefore legally unprotected
 - → Better value as evidence

Legal aspects: Digital signatures

- Digital signatures might be equivalent to handwritten ones:
 - → Specific certificate required ("qualified certificate")
 » Technically the same, but minimum requirements for keys, procedures, authentication of owner, ...
 - → Specific hardware required ("secure viewer", chipcards)
 - \rightarrow Not for all areas possible:

F[∐]^M

- » "Higher" forms: E.g. notarization
- » Family law and law of succession with form requirements
 - Not electronic legacy!
- » Declarations of surety by private persons
 - Very dangerous things; manual act as "warning"
- Additional: Legal presumption for the content of the message, as long as the signature is correct
 - \rightarrow That the signer said this, not that the content is correct!
- Importance: Between companies, E-Government

VPNs

• VPN = Virtual Private Network

→ A private network across a public medium

- » Replacement of leased lines by encrypted/authenticated communication using the "ordinary" and common internet
- → Especially important for mobile workers
 » Always "virtually" located in the home network with all possibilities there (telephone, server access, etc.)

→ Other application: Branch offices

- » The Internet serves as the company backbone
- Obviates the need for a firewall
 - → Everything is encrpyted and authenticated » Filtering would be impossible anyway
 - → But does NOT secure against "internal" attacks » Internet is protected against, Intranet must be secure itself!

Transparent for users (apart from establishing perhaps)!

F

VPNs

- Obviates the need for a firewall
 - → Everything is encrpyted and authenticated » Filtering would be impossible anyway
 - → But does NOT secure against "internal" attacks » Internet is protected against, Intranet must be secure itself!
 - → Does NOT apply in "split" configurations
 - » Some traffic is sent through the tunnel (e.g. file server access)
 - » Some traffic is sent to the Internet (e.g. webbrowser)

Disadvantages:

- Traffic can no longer be compressed
 » Must happen before or at the tunnel endpoint
- → No QoS (as often available with leased lines)
- → Sometimes difficult to set up
- → Powerful hardware needed for encrypting larger bandwidth

F

E

- Transport of packets from one protocol over another one
 - → Done by "packing" the original packets into new packtes of the outer protocol
 - → Transparent to upper layers
 - → Can also be used identically, i.e. packing IP into IP » This is used e.g. by IPSec (+ additional information)
 - → Reasons: not suported (e.g. IPX), unroutable (NetBUI), illegal addressing (192.168.?.?), ...
- Source: Encapsulation
 - \rightarrow Adding a new header (and perhaps a new trailer)

Header Header

Data

Destination: Extraction

→ Passes the content on in some locally defined manner

Tunneling

PPTP

- Point to Point Tunneling Protocol (version of PPP)
 - → Supports IP, IPX, NetBUI
- Client-Server-Model
- Rather easy to set up (and client is integrated into windows)
- Can be transported across NAT (with additional software, ...)
- Client authentication by username/password
 - → Several old and very insecure algorithms/protocols exist!
 - Server is not authenticated in most implementations!
- Encryption of content optional
- No key management protocols
 - \rightarrow Key remains the same for the whole communication!
- No integrity check for packets

IPSec

- IP Security Protocol (intended for IPv6, but used also for v4)
 - → No full layer 3 support: No multicasts, static routing only
 » Static routing: No dynamically "redirecting" the tunnel; the encapsulated packets can be routed in any way
- Allows (and implementations support) a multitude of authentication, encryption, hash and compression protocols
- Mutual authentication of packets and endpoints
- Key exchange protocol
 - → New key for each tunnel and regularly changing keys
- Encryption of complete content
- Supports IP only

En m

IPSec vs. PPTP

- PPTP is easier to set up
 - → Username and password, no certificates, CAs, CRLs needed » IPSec also supports Pre-Shared-Keys; wizards for setup sometimes availbale (depending on vendor)
- IPSec is much more secure
 - → Keys exchanged during usage
 - → Algorithms supported are more secure
- PPTP can go over NAT
 - This might be good or bad, however!
- IPSec implementations have fewer weaknesses
 - → Microsoft PPTP implementation has (still) many weaknesses
- IPSec supports IP only

When possible, use IPSec!

FU™

IPSec: Modes

- Transport mode: Only data in encrypted
 - \rightarrow Header remains publicly visible!
 - → Additional small header added

F[∐][™]

- → Used for secure connections (Host-Host communication) » Rather rarely used
- Tunnel mode: Complete packet is encrypted
 - → Completely new IP header added (in addition to ESP header)
 - → Used for VPNs (LAN-LAN tunnel)

IPSec

- AH protocol: Authentication Header
 - → Cryptographic checksum over packet » No modification on transport, identified peer was sender
 - → Includes the complete header \Rightarrow NAT impossible
- ESP protocol: Encapsulation Security Payload
 - → Encryption of whole packet
 - → DES, MD5, SHA must be supported, anything als can be
- IPComp: Compression protocol
 - → To be used optionally before encryption
- IKE: Internet Key Exchange
 - » Optional protocol (\Rightarrow manual configuration otherwise)
 - Agreeing on a shared secret for authentication/encryption
 - → Uses e.g. Diffie-Hellman or master keys

F[∐]^M

IPSec limitations

- IPSec does not work with dynamic IPs
 - → One fixed and one dynamic is still possible, as long as the dynamic side is the initiator
 - → If both sides have dynamic IPs, DynDNS (and software support) is necessary
 - » IPSec works on the level of IP, therefore it only understands IP addresses; Name→IP address resolution must be external!
- No NAT: Use IPSec "afterwards" (e.g. router appliance)
 - → Or directly on the same router (first NAT, then IPSec) » But then its probably better to use an IPSec LAN-LAN tunnel!
- Very complex: Small errors might lead to working solution, but reduce security significantly
- Interoperability sometimes lacking, but improving
- Debugging is difficult: Everything is encrypted, ...!

IF

Other security aspects

- Using VPNs, SSL, digital signatures is nice (and necessary!), but does not solve all problems:
 - → Denial of Service
 - → Endpoint security (storing those creditcard numbers)
 - → Users: Security is cumbersome and therefore circumvented
 - Cryptography is only as secure as the key storage
 » Who uses really good passwords/passphrases?
 » How is the "backup" of the password organized (bank safe)?
 - → Physical security? Social engineering? Internal attacks?
- But security is also not self-serving:
 - → Value of goods to be secured vs. cost of protection

Holistic view required for encompassing security!