
© Michael Sonntag 2011

Code signing

Institute for Information Processing and
Microprocessor Technology (FIM)

Johannes Kepler University Linz, Austria
E-Mail: sonntag@fim.uni-linz.ac.at
http://www.fim.uni-linz.ac.at/staff/sonntag.htm

Mag. iur. Dr. techn. Michael Sonntag

Michael Sonntag 2Code signing

Agenda

Code signing overview

Signing .NET code

Strong names

Authenticode

Signing applets

Java Web start

Michael Sonntag 3Code signing

Code signing: Why?

Typically there is only a single incentive for signing code

To get it to run!

Why?

Security precautions prevent unsigned code from running

Other reasons:

Verifying integrity (viruses) etc. More secure than hashes

Preventing modifications (normal end users / attackers)

Marking ownership of the code

Problem: Signed code is not any more secure!

Signature = Who “authorized” the code

Signature

Who “checked” the code

Guarantees based on the certificate are very weak

» The company/person it was issued to exists
– Additionally sometimes: And has pledged to not distribute malware

or viruses knowingly or when he should have known

Michael Sonntag 4Code signing

Code signing: Why?

Code signing = Authentication + Integrity

Practice: To make sure the “program” arriving at the client
actually is identical to the one produced by the author

Download secured by hashes: Modify the webpage to in
exactly the same way as the download to get “correct” ones

Download secured by signature: You need to obtain the
(typically stored offline/on other servers) stored private key

What do you not get by code signing?

Security guarantees, insurance, …

Bug-free software

Protection against decompilation

Protection against modifications by user

» Typically the signature can be removed and the program then
runs also (if security is configured appropriately!)

Michael Sonntag 5Code signing

Bruce Schneier on code signing

First, users have no idea how to decide if a particular signer
is trusted or not.

Second, just because a component is signed doesn't mean
that it is safe.

Third, just because two components are individually signed
does not mean that using them together is safe; lots of
accidental harmful interactions can be exploited.

Fourth, "safe" is not an all-or-nothing thing; there are
degrees of safety.

And fifth, the fact that the evidence of attack (the signature
on the code) is stored on the computer under attack is
mostly useless: The attacker could delete or modify the
signature during the attack, or simply reformat the drive
where the signature is stored.

Bruce Schneier: Secrets and Lies - Digital Security in a Networked World, John
Wiley and Sons, 2000

Michael Sonntag 6Code signing

Strong names

Applies to .NET platform: Signing assemblies

There used to uniquely identify each assembly

They are not intended for security

» They can be removed from an executable program, which will
then still be able to run fine!

– But only with additional security configuration

Additional feature: Versioning

» Not directly by the signature, but the associated metadata
– To get out of “DLL hell”: DLLs with same name but different content

When using the Global Assembly Cache (GAC) strong
names are mandatory

For collision protection, not for authentication!

Problem: Revocation of keys is not supported

Advantages:

No official certificates needed

Can run offline: No online checks needed; but see revocation!

Michael Sonntag 7Code signing

Strong Names

Strong name (SN) =

Text name of the assembly

Version number

Culture information (optional)

Public key + signature

Assemblies with SN can only reference SN-assemblies

SN does not involve certificates, only public/private keys

Referencing another assembly Public key of that assembly
is stored in the calling assembly

» Check at runtime whether this key is the same as the one used
to sign the assembly found on disk

» Check whether the signature on that assembly is correct

Public key distribution needed

Since .NETv4 not really a security measure any more

Integrity is still important

Michael Sonntag 8Code signing

Strong Names
Delay signing

Management problem:

Strong signing must keep the private key absolutely secret

But it must be applied every time the source code is compiled

Solution: Delay signing

Compilation is possible with the public key alone

» This can be distributed to all developers

Must be specified in the assembly information file

» Compiler leaves place empty for the actual signature

Actual signing takes place with another (test) key

Verification must be switched off if using the GAC

» This is necessary on the developer machines only!
» Can be done on a per-assembly basis

Attention: Before shipping signing with the “real” private key
must take place!

This will insert the signature into the place reserved for it

Michael Sonntag 9Code signing

Signing code with SN

Creating a new keypair

sn –k KeyFile.snk

» Note: No certificate, no name, encryption, …
» Protection must be organized by yourself!

Configure Visual Studio to (delay) sign the executable

Take the warning seriously!

Delay signing is more complex

You need a second key pair

Public key from “original”

Signatur from alternative

Security configuration
to accept the alternative key (must be run as administrator!)

Replaying the temporary signature before release

We will skip the intermediate steps here!

Michael Sonntag 10Code signing

Signing code with SN

Run the delay-signed executable

It crashes – Investigate what the real problem is

» The real problem is in the details: Exception Code: e0434f4d
– Very difficult to find out; but when debugging it:

Apply the “real” signature: sn –R SNApp KeyFile.snk

Now it runs!

Verifying the signature (without running it, e.g. DLLs):

sn -v SNApp.exe

Michael Sonntag 11Code signing

Authenticode

Uses a full certificate As opposed to strong names the
key distribution/verification becomes easier

Also supports revocation checking

Aims of Authenticode:

Identifying the publisher

» Separation between commercial/individual users’ certificates

Ensuring integrity

Signing a file does:

Add the actual signature to the file

Add the certificate

Optionally add a timestamp (should always be done!)

» Requires a timestamping server; can also be added later
» To ensure the software can still be used when the certificate has

expired (valid only for one year – “tax” on SW developers!)
» Revocation check for this is off by default!

Michael Sonntag 12Code signing

Authenticode:
Certificates

Requirements for certificates

Applicants must provide proof for their identity

» Standard certificate practice
» Seems to be much more relaxed regarding individuals

Applicants must pledge that they will not distribute software
that they know, or should have known, contains viruses or
would otherwise harm a user's computer or code

Commercial applicants need additionally:

» Minimal financial standing: DUNS number
– Dun & Bradstreet – a credit rating company

Certificate is special for software publishing

Actually a standard certificate with special usage restrictions

Attention: Microsoft does NOT provide certificates!

Use the “normal” certification authorities

Michael Sonntag 13Code signing

Responsibilities of a CA

As a leading Digital Certificate Authority, Comodo has the
following responsibilities:

Publishing the criteria for granting, revoking, and managing
certificates

Granting certificates to applicants who meet the published criteria

Managing certificates (for example, enrolling, renewing, and
revoking them)

Storing Comodo's root keys in an exceptionally secure manner

Verifying evidence submitted by applicants

Providing tools for enrollment

Accepting the liability associated with these responsibilities

Time stamping a digital signature

Source: http://www.instantssl.com/code-signing/code-
signing-technical.html

Certificates are valid for 1-3 years and cost

€ 170/year

» Plus cost of official translation of documents!

Michael Sonntag 14Code signing

Creating an Authenticode certificate

Creating a certificate:

makecert -# ! -$ individual -n "CN=Michael
Sonntag,E=sonntag@fim.uni-linz.ac.at" -e 12/31/2015 -sv
cert.pvk -r cert.cer

» Serial number: 1
» For individual SW publisher (alternative: commercial)
» Issuer & Subject: “Michael Sonntag” as Common Name

– And “sonntag@fim.uni-linz.ac.at” as E-Mail address
» End date: 31.12.2015
» Self-signed (“-r”)
» Enter (+ confirm + enter for signing) and remember the

password for the private key (or enter nothing for unprotected!)

Create a PKCS#7 object (=list of all certificates)

cert2spc cert.cer cert.spc

» Here only one, otherwise the whole chain to the root certificate!

Michael Sonntag 15Code signing

Signing code with Authenticode

Combine certificate and private key

pvk2pfx -pvk cert.pvk -spc cert.spc -pfx cert.pfx

Actual signing

signtool sign /d "iWwrite App" /du "http://www.iwrite.app/"
/f cert.pfx /t http://timestamp.verisign.com/scripts/timstamp.dll
SNApp.exe

Additional information (optional!)

» Nice name for software
» URL of the developer
» Not verified, just for displaying

Timestamp it

Michael Sonntag 16Code signing

Verifying Authenticode

Through the Windows Explorer

Once signed, right-click shows new tab “Digital Signatures”

Problem only because the certificate is self-signed and not
imported into the trusted root certificates store!

Michael Sonntag 17Code signing

Verifying Authenticode

Programmatically:

Signtool verify /r "Michael Sonntag" /tw /pa SNApp.exe

» Check the name in the certificate
» Check the timestamp
» Use the default authentication verification policy

– Otherwise it would be verified as a driver!
» Adding “/v” prints the certificate(s) included

Output here:

SignTool Error: A certificate chain processed, but terminated
in a root certificate which is not trusted by the trust provider.
SignTool Error: File not valid: SNApp.exe
Number of errors: 1

Note: The application can be executed perfectly and works!

After importing the certificate as a trusted root certificate:

Successfully verified: SNApp.exe

Michael Sonntag 18Code signing

SmartScreen and code signing

IE 9 has a new application reputation feature

Downloads receive a reputation rating based on:

» Antivirus result, download traffic, download history, URL
reputation, Windows logo (expensive!)

» File identifier (hash) & publisher (dig. signed) are sent to a cloud
service, which stored the data and returns a reputation value

Often downloaded & few complaints Good reputation

Bad reputation is fed back to the signer’s certificate and from
there to all other programs signed with the same certificate

Problems:

Every new version of a program has its own reputation

» Problem for applications changing (e.g. updated) frequently

Very expensive to “get around”: official certificate + logo

Drawback for smaller companies/free software

Digital signature alone is insufficient for “no warning”

Michael Sonntag 19Code signing

Signing applets

Applets run within a sandbox, prohibiting most interesting
actions because of associated security dangers

Allowing them access requires explicit permission

This is possible “generally”, i.e. for all applets

Or based on the signer of the applet

» Requiring, of course, that the applet is signed

Problems:

Configuration! The browser/applet viewer doesn’t ask, it
merely allows access or blocks it!

» New versions: Improvements (see below)!

Michael Sonntag 20Code signing

“New” applet security model

All unsigned applets run within the sandbox

With all locally defined exceptions

“usePolicy” defined within the local policy file?

» Can be defined according to the source of the code or generally
– grant { permission java.lang.RuntimePermission "usePolicy"; };

Yes: Signed applets receive those permissions specified in
the local policy file without any user intervention

» These can be very fine-grained and be based on the source of
the code and its signer

No: Dialog asking whether to grant all permissions or not

» No restriction possible: Nothing or “AllPermission” only!
» But: For this signer and for this session only, or for all applets

from this signer in the future
» But: Everything in the local policy is applied regardless of the

user’s answer in addition!
– User denied access, but allowed according to local policy Works!

Michael Sonntag 21Code signing

“New” applet security model

Recommendations for configuration:

In companies, add a central policy file

» One line in the local policy file pointing to a central file on a web
server which will be incorporated

Two applets:

» One signed applet (=showing the dialog), which then modifies
the policy file

» Another applet performing the actual function

Michael Sonntag 22Code signing

Signing applets

Example: Trivial applet writing to the file “C:\Temp\temp.txt”
in the applet initialization (=no UI at all)

Writing to a local file Forbidden within the sandbox

Executing it directly leads to an AccessControlException

Remedy: Sign it!

Generating a keypair/certificate request

keytool –genkey –keystore keystore.jks –alias MyStore
–dname „CN=Michael Sonntag” –validity 365

» Automatically generates a self-signed certificate too

Sign the jar file

jarsigner –keystore keystore.jks file.jar MyStore

Programmatically verifying the signature

jarsigner -verify -verbose -certs WriteFileApplet.jar

» Prints detailed information and certificate as well

Michael Sonntag 23Code signing

Signing applets: Result

Creates signature file within META-INF directory inside jar

Signature-Version: 1.0
SHA1-Digest-Manifest-Main-Attributes:
K1IZiGg6aKM/FiKTQ9VNYsurfKo=
Created-By: 1.6.0_18 (Sun Microsystems Inc.)
SHA1-Digest-Manifest: 3gMOg2eEQl2vQz9/G8yK1fiADRE=

Name: WriteFileApplet.class
SHA1-Digest: lnzY0hcvs8iwXFmIUIW/phbbLmQ=

Adds digest values to the manifest (MYSTORE.SF)

Name: WriteFileApplet.class
SHA1-Digest: 1s95HHStGBJY8tvSqxXQGbjj50c=

Adds binary representation of signature and certificate
(MYSTORE.DSA)

Michael Sonntag 24Code signing

Running a signed applet

This doesn’t help at all at the moment:

What is missing are matching permission

These must be administered locally

There is no real user interface for it

» Only a tool for manipulating the policy files, but not for
“installing” a policy or managing them

This is a text file within the JRE path!

» Or specified explicitly when starting the application/applet

Michael Sonntag 25Code signing

Creating a policy file

Example of a separate policy file allowing only the minimum
needed for this applet: Writing to a single file

keystore "keystore.jks", "jks";
grant SignedBy „MyStore" {

permission java.io.FilePermission "c:\\temp\\temp.txt", "write"; };

Attention: Many pitfalls!

The URL of the keystore must be exactly right (no warning!)

» If a “file://” URL: Must use forward slashes (“/”)

The file permission must use backslashes (=local name)!

“SignedBy” uses the local alias in the keystore, not the name
within the certificate!

May also be added to the system-wide policy file

Example:

appletviewer -J-Djava.security.policy=java.policy Applet.jar

» “java.policy” = Filename of the policy file (see above)

Michael Sonntag 26Code signing

Java Web Start

“Distribution system” for Java applications

They can be started from a web browser (downloaded only
once and cached), but they don’t need one

» They are real applications

Applets can run inside JWS, then they don’t need a browser

JWS apps are cached indefinitely on the client and run
without any network connection

» Automatic update check, iff network connection exists

Can automatically download a specific JRE version if needed

Reference implementation of the JNLP

Java Network Launching Protocol

Defines an XML schema how to start such an application

» Where to find jars, security configuration, update settings, …

Special compression (“Pack200”) to reduce jar size

Doesn’t seem to be widely used

Michael Sonntag 27Code signing

Java Web Start

Security: Unsigned JWS apps runs in a sandbox

Some slight modifications from applet sandbox

» Can import/export files, print, open socket connections:
– After requesting user permission!

Signing is identical to applets

Signed JWS: No sandbox Can do everything it wants

» Specific security configuration exists, but the only element
currently specified is “all-permissions”!

Implementation considerations:

All jars in a JWS package must be signed with the same
certificate: Unpack + re-sign them or use several JNLP files

Web server must serve JWS apps with MIME type
“application/x-java-jnlp-file”

» Browser must be configured to run this MIME type correctly
» Similar: *.jnlp must be associated to javaws.exe for local files
» Both is done by the JRE installer

Michael Sonntag 28Code signing

Conclusions

Code signing is difficult to get right

Extensive testing needs to ensure that it works and that really
no warning signs pop up

It gives only limited advantages

No warning signs

No modification in transit

» If users can identify the publisher to be the correct one!

Drivers must be signed in newer versions of Windows

But there are shortcomings

Limited to certain file types

Verification is limited to specific circumstances

Full automation in the build process is possible

And highly desirable!

© Michael Sonntag 2011

Questions?Questions?
Thank you for your attention!

? ?

??

??

Michael Sonntag 30Code signing

Literature/Links

Microsoft: Introduction to code signing
http://msdn.microsoft.com/en-
us/library/ms537361%28v=vs.85%29.aspx

IEBlog: SmartScreen Application Reputation – Building
Reputation
http://blogs.msdn.com/b/ie/archive/2011/03/22/smartscreen-
174-application-reputation-building-reputation.aspx

Oracle: Applet Security Basics
http://download.oracle.com/javase/6/docs/technotes/guides/
plugin/developer_guide/security.html

	Code signing
	Agenda
	Code signing: Why?
	Code signing: Why?
	Bruce Schneier on code signing
	Strong names
	Strong Names
	Strong Names�Delay signing
	Signing code with SN
	Signing code with SN
	Authenticode
	Authenticode:�Certificates
	Responsibilities of a CA
	Creating an Authenticode certificate
	Signing code with Authenticode
	Verifying Authenticode
	Verifying Authenticode
	SmartScreen and code signing
	Signing applets
	“New” applet security model
	“New” applet security model
	Signing applets
	Signing applets: Result
	Running a signed applet
	Creating a policy file
	Java Web Start
	Java Web Start
	Conclusions
	Questions?
	Literature/Links

